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The case of 3 (4)

Let p be an odd prime number.

Theorem (Fermat)

p is a sum of two squares iff p ≡ 1 (4).

Proof (The first half).

Let p ≡ 3 (4) and assume p = k21 + k22 .
Then k1 and k2 equal either 0 (4), 1 (4), 2 (4) or 3 (4).
Thus k21 and k22 equal either 0 (4) or 1 (4).
Therefore k21 + k22 can only equal 0 (4), 1 (4) or 2 (4).
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Wilson’s Theorem
and Corollary

Wilson’s Theorem

If p is prime, then (p − 1)! ≡ −1 (p).

Corollary

If p ≡ 1 (4), we can solve x2 ≡ −1 (p).

Example

Let p = 13. Then, by Wilson’s Theorem, 12! ≡ −1 (13).
12! = 12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1.
Taking remainder mod 13,
12! ≡ (−1)(−2)(−3)(−4)(−5)(−6)(6)(5)(4)(3)(2)(1) (13).
Pulling out −1s, we have (−1)6 · (6!)2 ≡ (6!)2 ≡ −1 (13).
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The Gaussian integers

Definition

The Gaussian integers are the set of complex numbers of the form
a + bi where a, b ∈ Z.

These act like integers in the following sense:

Some numbers are prime, and every number factors uniquely into a
product of primes.
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Implications of the Norm

Theorem

A prime p is either prime or can be factored into (a + bi)(a− bi).

Corollary

A prime p is not prime iff p = a2 + b2.

Example

5 = 22 + 12 = (2− i)(2 + i).

Example

If p ≡ 3 (4), p is prime.
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Factorization using Wilson’s Theorem

Theorem

If p ≡ 1 (4), then p is not prime.

Example

Consider p = 3301. By Wilson’s Theorem,
(1650!)2 + 1 ≡ (1212)2 + 1 ≡ 0 (3301). So
3301|(1212 + i)(1212− i).
But 3301 doesn’t divide 1212 + i or 1212− i .
So, 3301 is not prime!
3301 · 5 · 49 = (1212 + i)(1212− i).
3301(2− i)(2 + i)(8− 5i)(8 + 5i) = (1212 + i)(1212− i).
(1212 + i)/(2 + i) = (485− 242i)/(8 + 5i) = 30 + 49i .
Thus 3301 = 302 + 492.
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