Sums of two squares A tale of two sums

Melanie Abel

Department of Mathematics University of Maryland, College Park

Directed Reading Program, Fall 2016

A ►

The case of 3(4)

Let p be an odd prime number.

Theorem (Fermat)

p is a sum of two squares iff $p \equiv 1$ (4).

< □ > <

The case of 3(4)

Let p be an odd prime number.

Theorem (Fermat)

p is a sum of two squares iff $p \equiv 1$ (4).

Proof (The first half).

Let
$$p \equiv 3$$
 (4) and assume $p = k_1^2 + k_2^2$.

▲ 同 ▶ → ● 三

The case of 3(4)

Let p be an odd prime number.

Theorem (Fermat)

p is a sum of two squares iff $p \equiv 1$ (4).

Proof (The first half).

Let $p \equiv 3$ (4) and assume $p = k_1^2 + k_2^2$. Then k_1 and k_2 equal either 0 (4), 1 (4), 2 (4) or 3 (4).

白 ト く ヨ

The case of 3(4)

Let p be an odd prime number.

Theorem (Fermat)

p is a sum of two squares iff $p \equiv 1$ (4).

Proof (The first half).

Let
$$p \equiv 3$$
 (4) and assume $p = k_1^2 + k_2^2$.
Then k_1 and k_2 equal either 0 (4), 1 (4), 2 (4) or 3 (4).
Thus k_1^2 and k_2^2 equal either 0 (4) or 1 (4).

▲ 同 ▶ → ● 三

The case of 3(4)

Let p be an odd prime number.

Theorem (Fermat)

p is a sum of two squares iff $p \equiv 1$ (4).

Proof (The first half).

Let
$$p \equiv 3$$
 (4) and assume $p = k_1^2 + k_2^2$.
Then k_1 and k_2 equal either 0 (4), 1 (4), 2 (4) or 3 (4).
Thus k_1^2 and k_2^2 equal either 0 (4) or 1 (4).
Therefore $k_1^2 + k_2^2$ can only equal 0 (4), 1 (4) or 2 (4).

▲ 同 ▶ → 三 ▶

Wilson's Theorem

Wilson's Theorem

If p is prime, then $(p-1)! \equiv -1$ (p).

▲ 同 ▶ → 三 ▶

Wilson's Theorem and Corollary

Wilson's Theorem

If p is prime, then
$$(p-1)! \equiv -1 (p)$$
.

Corollary

If
$$p \equiv 1$$
 (4), we can solve $x^2 \equiv -1$ (p).

э

< □ > <

Wilson's Theorem

Wilson's Theorem

If p is prime, then
$$(p-1)! \equiv -1 (p)$$
.

Corollary

If
$$p \equiv 1$$
 (4), we can solve $x^2 \equiv -1$ (p).

Example

Let p = 13. Then, by Wilson's Theorem, $12! \equiv -1$ (13).

Wilson's Theorem

Wilson's Theorem

If p is prime, then
$$(p-1)! \equiv -1 (p)$$
.

Corollary

If
$$p \equiv 1$$
 (4), we can solve $x^2 \equiv -1$ (p).

Example

Let p = 13. Then, by Wilson's Theorem, $12! \equiv -1$ (13). $12! = 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.

Wilson's Theorem

Wilson's Theorem

If p is prime, then
$$(p-1)! \equiv -1 (p)$$
.

Corollary

If
$$p \equiv 1$$
 (4), we can solve $x^2 \equiv -1$ (p).

Example

Let
$$p = 13$$
. Then, by Wilson's Theorem, $12! \equiv -1$ (13).
 $12! = 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.
Taking remainder mod 13,
 $12! \equiv (-1)(-2)(-3)(-4)(-5)(-6)(6)(5)(4)(3)(2)(1)$ (13)

Wilson's Theorem

Wilson's Theorem

If p is prime, then
$$(p-1)! \equiv -1 (p)$$
.

Corollary

If
$$p \equiv 1$$
 (4), we can solve $x^2 \equiv -1$ (p).

Example

Let
$$p = 13$$
. Then, by Wilson's Theorem, $12! \equiv -1$ (13).
 $12! = 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.
Taking remainder mod 13,
 $12! \equiv (-1)(-2)(-3)(-4)(-5)(-6)(6)(5)(4)(3)(2)(1)$ (13).
Pulling out -1s, we have $(-1)^6 \cdot (6!)^2 \equiv (6!)^2 \equiv -1$ (13).

The Gaussian integers

Definition

The Gaussian integers are the set of complex numbers of the form a + bi where $a, b \in \mathbb{Z}$.

These act like integers in the following sense:

The Gaussian integers

Definition

The Gaussian integers are the set of complex numbers of the form a + bi where $a, b \in \mathbb{Z}$.

These act like integers in the following sense:

Some numbers are prime, and every number factors uniquely into a product of primes.

Implications of the Norm

Theorem

A prime p is either prime or can be factored into (a + bi)(a - bi).

▲ □ ▶ ▲ □ ▶ ▲

∃ >

Implications of the Norm

Theorem

A prime p is either prime or can be factored into (a + bi)(a - bi).

Corollary

A prime p is not prime iff $p = a^2 + b^2$.

A ► <

Implications of the Norm

Theorem

A prime p is either prime or can be factored into (a + bi)(a - bi).

Corollary

A prime *p* is not prime iff $p = a^2 + b^2$.

Example

$$5 = 2^2 + 1^2 = (2 - i)(2 + i).$$

▲ 同 ▶ → 三 ▶

Implications of the Norm

Theorem

A prime p is either prime or can be factored into (a + bi)(a - bi).

Corollary

A prime *p* is not prime iff $p = a^2 + b^2$.

Example

$$5 = 2^2 + 1^2 = (2 - i)(2 + i)$$

Example

If $p \equiv 3$ (4), p is prime.

<ロ> (日) (日) (日) (日) (日)

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

1 ▶ ▲

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

Example

Consider p = 3301. By Wilson's Theorem, $(1650!)^2 + 1 \equiv (1212)^2 + 1 \equiv 0$ (3301).

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

Example

Consider p = 3301. By Wilson's Theorem, $(1650!)^2 + 1 \equiv (1212)^2 + 1 \equiv 0$ (3301). So 3301|(1212 + i)(1212 - i).

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

Example

Consider p = 3301. By Wilson's Theorem, $(1650!)^2 + 1 \equiv (1212)^2 + 1 \equiv 0 (3301)$. So 3301|(1212 + i)(1212 - i). But 3301 doesn't divide 1212 + i or 1212 - i.

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

Example

Consider p = 3301. By Wilson's Theorem, $(1650!)^2 + 1 \equiv (1212)^2 + 1 \equiv 0$ (3301). So 3301|(1212 + i)(1212 - i). But 3301 doesn't divide 1212 + i or 1212 - i. So, 3301 is not prime!

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

Example

Consider p = 3301. By Wilson's Theorem, $(1650!)^2 + 1 \equiv (1212)^2 + 1 \equiv 0 \ (3301)$. So 3301|(1212 + i)(1212 - i). But 3301 doesn't divide 1212 + i or 1212 - i. So, 3301 is not prime! $3301 \cdot 5 \cdot 49 = (1212 + i)(1212 - i)$.

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

Example

Consider p = 3301. By Wilson's Theorem, $(1650!)^2 + 1 \equiv (1212)^2 + 1 \equiv 0 \ (3301)$. So 3301|(1212 + i)(1212 - i). But 3301 doesn't divide 1212 + i or 1212 - i. So, 3301 is not prime! $3301 \cdot 5 \cdot 49 = (1212 + i)(1212 - i)$. 3301(2 - i)(2 + i)(8 - 5i)(8 + 5i) = (1212 + i)(1212 - i).

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

Example

Consider p = 3301. By Wilson's Theorem, $(1650!)^2 + 1 \equiv (1212)^2 + 1 \equiv 0 \ (3301)$. So 3301|(1212 + i)(1212 - i). But 3301 doesn't divide 1212 + i or 1212 - i. So, 3301 is not prime! $3301 \cdot 5 \cdot 49 = (1212 + i)(1212 - i)$. 3301(2 - i)(2 + i)(8 - 5i)(8 + 5i) = (1212 + i)(1212 - i). (1212 + i)/(2 + i) = (485 - 242i)

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

Example

Consider p = 3301. By Wilson's Theorem, $(1650!)^2 + 1 \equiv (1212)^2 + 1 \equiv 0 \ (3301)$. So 3301|(1212 + i)(1212 - i). But 3301 doesn't divide 1212 + i or 1212 - i. So, 3301 is not prime! $3301 \cdot 5 \cdot 49 = (1212 + i)(1212 - i)$. 3301(2 - i)(2 + i)(8 - 5i)(8 + 5i) = (1212 + i)(1212 - i). (1212 + i)/(2 + i) = (485 - 242i)/(8 + 5i) = 30 + 49i.

Factorization using Wilson's Theorem

Theorem

If $p \equiv 1$ (4), then p is not prime.

Example

Consider p = 3301. By Wilson's Theorem, $(1650!)^2 + 1 \equiv (1212)^2 + 1 \equiv 0 \ (3301)$. So 3301|(1212 + i)(1212 - i). But 3301 doesn't divide 1212 + i or 1212 - i. So, 3301 is not prime! $3301 \cdot 5 \cdot 49 = (1212 + i)(1212 - i)$. 3301(2 - i)(2 + i)(8 - 5i)(8 + 5i) = (1212 + i)(1212 - i). (1212 + i)/(2 + i) = (485 - 242i)/(8 + 5i) = 30 + 49i. Thus $3301 = 30^2 + 49^2$.