Lie Algebras to Root Systems

Student: Arpan Bhattacharyya Mentor: Jon Cohen

Lie Algebras

- A Lie algebra is a vector space over some field with some binary operation that satisfies the following axioms:
 - Bilinearity
 - [ax + by, z] = a[x, z] + b[y, z]
 - Alternating
 - [x, x] = 0
 - Satisfies the Jacobi identity
 - [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

Root Systems

- A root system over some finite-dimensional Euclidean vector space V is a set of non-zero vectors (roots) which satisfy the following properties:
 - The roots span V
 - The only scalar multiples of a root x appearing in the set are x and -x.
 - For every root, the set is closed under reflection through the hyperplane perpendicular to that root.
 - *V* must be an inner-product space.
 - For roots α , β , $<\alpha$, $\beta > := 2(\beta, \alpha)/(\alpha, \alpha)$ is an integer.

Examples of Root Systems

Resources

- Jon Cohen
- Introduction to Lie Algebras by Karin Erdmann and Mark J.
 Wildon
- Introduction to Lie Algebras and Representation Theory by James E. Humphreys
- ...Mostly Jon Cohen