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Introduction

@ Infectious diseases are typically categorized as either acute or chronic.
@ Acute refers to "fast” infections, where immune system will quickly counter
the pathogen in a very short period and eventually remove the pathogen.

@ SIR model categorizes hosts within a population as Susceptible(if previously
had not been in contact with pathogen) Infected(if currently contain
pathogen) and Recovered(successfully removed infection).
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ODE Model

@ Susceptible: uN—BST/N—uS
o Infected: BSI/N-~vI-ul
@ Recovered: vI—uR
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Initial Condition

e =1

@ g =5x10"*

e 7 =0.1

@ Initial Population: Ny = 5000,

@ Initial Susceptible Population: Sy = 500,
o Initial Infected Population:Iy = 25,

@ Initial Recovered Population: Ry = 4475
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Simulation:ODE Model

Here's the simulation of SIR model without Demographic Stochasticity.
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Demographic Stochasticity

@ Demographic stochasticity is defined as fluctuations in population processes
that arise from the random nature of events at the level of the individual
(Keeling, Rohani,2008).

@ Therefore, even though the baseline probability associated with each event is
fixed, individuals experience differing fates because of different chances.

@ Furthermore, the numbers of susceptible, infectious and recovered have to be
an integer since people can't be split in half.
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Events In SIR Stochastic Model

Overall:6 Events

Birth occur at rate uN. Result: S — S + 1.

Transmission occurs at rate 8ir / N. Result: /| — /-1and S— S- 1.
Recovery occurs at rate v/. Result: R—+ R+ 1and /| — /- 1.

Death of S, I or R occurs at rate uS, ul, uR.
Result: /-1and S— S-1,l—/-1. or R— R-1.
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Gillespie's First Reaction Method

The following pseudo-code provides a slower, but often more intuitive, means of
modeling demographic stochasticity;

1. Label all possible events Fj,...,E,.

2. For each event determine the rate at which it occurs, Ry,...,R,.

3. For each event m calculate the time until the next event is dt,,, =

7o log(RAN D,y,).

4. Find the event, p, that happens first (has the smallest 6t).

5. The time is now updated, t — §t,, and event p is performed.

6. Return to Step 2.

@ With either of these popular implementations of stochasticity, the amount of
computer time needed to simulate a particular disease scenario increases
linearly with the population size.

@ Similarly, Simulation of a large epidemic with many cases is slower than
simulating a disease close to its endemic level, as many more events occur in
the same time period.
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Initial Condition

e =1

@ g =5x10"*

e 7 =0.1

@ Initial Population: Ny = 5000,

@ Initial Susceptible Population: Sy = 500,
o Initial Infected Population:Iy = 25,

@ Initial Recovered Population: Ry = 4475

Jun ChuDirect Reading ProgramAdvisor: Daniel WeintIntroduction to Gillespie's Algorithm in Epidemiology December 10, 2012 9/12



Example

Let's do a quick example using Gillispies’ first reaction method:
1. Possible events:
2. Possible rates:
> ry = 2.5, T = 2.5, ry = 2.5
» ry = 0.25, r5 = 0.0125, r¢ = 2.2375
3. Generate a 6x1 vector called Rand where m € {1,2,3,4,5.6}, Rand(m):=
U(0,1)
» Rand(1) = 0.3998, Rand(2) = 0.2599, Rand(3) = 0.8001
» Rand(4) = 0.4314, Rand(5) = 0.9106, Rand(6) = 0.1818
4. Caleulate: 6t,, = =L log(RAND,,).
> 0t1 = 0.3667 dt2 = 0.5390 ot3 = 0.0892

> Oty = 3.3627 6ts = 7.4879 dtg = 0.7618
» Clearly § t3 is the smallest

5. Now the time is updated to § t3, and population and rates are updated:
> S1=S0=500 I1=Ip—1 =24 R1 = Ro+1 = 4476
6. Go back to Step2 and repeat the process.
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Simulation

Here's the simulation of SIR model that includes Demographic Stochasticity.
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Simulation

Here's another simulation of SIR model that includes Demographic Stochasticity.
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