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Introduction

Infectious diseases are typically categorized as either acute or chronic.

Acute refers to ”fast” infections, where immune system will quickly counter
the pathogen in a very short period and eventually remove the pathogen.

SIR model categorizes hosts within a population as Susceptible(if previously
had not been in contact with pathogen) Infected(if currently contain
pathogen) and Recovered(successfully removed infection).
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ODE Model

Susceptible: µN−βSI/N−µS
Infected: βSI/N -γI-µI

Recovered: γI−µR
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Initial Condition

β0 = 1

µ0 = 5×10−4

γ0 = 0.1

Initial Population:N0 = 5000,

Initial Susceptible Population: S0 = 500,

Initial Infected Population:I0 = 25,

Initial Recovered Population:R0 = 4475
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Simulation:ODE Model

Here’s the simulation of SIR model without Demographic Stochasticity.
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Demographic Stochasticity

Demographic stochasticity is defined as fluctuations in population processes
that arise from the random nature of events at the level of the individual
(Keeling, Rohani,2008).

Therefore, even though the baseline probability associated with each event is
fixed, individuals experience differing fates because of different chances.

Furthermore, the numbers of susceptible, infectious and recovered have to be
an integer since people can’t be split in half.
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Events In SIR Stochastic Model

Overall:6 Events

Birth occur at rate µN. Result: S → S + 1.

Transmission occurs at rate βir / N. Result: I → I - 1 and S → S - 1.

Recovery occurs at rate γI. Result: R → R + 1 and I → I - 1.

Death of S, I or R occurs at rate µS, µI, µR.
Result: I - 1 and S → S - 1, I → I - 1. or R → R - 1.
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Gillespie’s First Reaction Method

The following pseudo-code provides a slower, but often more intuitive, means of
modeling demographic stochasticity;

1. Label all possible events E1,...,En.

2. For each event determine the rate at which it occurs, R1,...,Rn.

3. For each event m calculate the time until the next event is δtm =
−1
Rm

log(RANDm).

4. Find the event, p, that happens first (has the smallest δt).

5. The time is now updated, t → δtp, and event p is performed.

6. Return to Step 2.

With either of these popular implementations of stochasticity, the amount of
computer time needed to simulate a particular disease scenario increases
linearly with the population size.

Similarly, Simulation of a large epidemic with many cases is slower than
simulating a disease close to its endemic level, as many more events occur in
the same time period.
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Initial Condition

β0 = 1

µ0 = 5×10−4

γ0 = 0.1

Initial Population:N0 = 5000,

Initial Susceptible Population: S0 = 500,

Initial Infected Population:I0 = 25,

Initial Recovered Population:R0 = 4475
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Example

Let’s do a quick example using Gillispies’ first reaction method:

1. Possible events:

2. Possible rates:
I r1 = 2.5, r2 = 2.5, r3 = 2.5
I r4 = 0.25, r5 = 0.0125, r6 = 2.2375

3. Generate a 6×1 vector called Rand where m ∈ {1, 2, 3, 4, 5.6}, Rand(m):=
U(0,1)

I Rand(1) = 0.3998, Rand(2) = 0.2599, Rand(3) = 0.8001
I Rand(4) = 0.4314, Rand(5) = 0.9106, Rand(6) = 0.1818

4. Calculate: δtm = −1
Rm

log(RANDm).
I δt1 = 0.3667 δt2 = 0.5390 δt3 = 0.0892
I δt4 = 3.3627 δt5 = 7.4879 δt6 = 0.7618
I Clearly δ t3 is the smallest

5. Now the time is updated to δ t3, and population and rates are updated:
I S1=S0= 500 I1=I0−1 = 24 R1 = R0+1 = 4476

6. Go back to Step2 and repeat the process.
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Simulation

Here’s the simulation of SIR model that includes Demographic Stochasticity.

Jun ChuDirect Reading ProgramAdvisor: Daniel Weinberg University of Maryland, College ParkIntroduction to Gillespie’s Algorithm in Epidemiology December 10, 2012 11 / 12



Simulation

Here’s another simulation of SIR model that includes Demographic Stochasticity.
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