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Fermat’s Last Theorem

Theorem

The equation xn + yn = zn has no nontrivial integer solutions for n ≥ 3.

We can reduce to the case when n is a prime number.

Theorem

The equation xp + yp = zp has no nontrivial integer solutions for p ≥ 3,
with p a prime.

We will only sketch a proof a special case, with additional restrictions.
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Pythagorean Theorem Example

Here we introduce the ring of the Gaussian Integers:

Definition

Z[i ] = {a + bi : a, b ∈ Z}

Using this, we want to classify all primitive Pythagorean Triples, i.e.
pairwise coprime integers x , y , z satisfying

x2 + y2 = z2

Now that we are working in this ring, we can factor the equation into

(x + yi)(x − yi) = z2

1 (x + yi) and (x − yi) are coprime.
2 x + yi = (m + ni)2 = (m2 − n2) + 2mni
3 x = m2 − n2, y = 2mn, z = m2 + n2, m, n relatively prime and not

both odd.
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The Special Case

In the previous example, unique factorization of elements was our main
tool. We want to apply this strategy to p ≥ 3, but there is a problem,
because not all number rings have unique factorization of elements.

Theorem

Suppose p is an odd prime and p does not divide the class number of the
field Q(ζp), where ζp is a primitive pth root of unity. Then

xp + yp = zp, gcd(xyz , p) = 1

has no nontrivial integer solutions.

The restriction on xyz means that p does not divide x , y , and z .
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Number Fields

Definition

A number field is a subfield of C having finite dimension as a vector
space over Q.

Q[
√
m] where m is a nonsquare integer.

Q[i ] = {a + bi : a, b ∈ Q}
We will use later that Q[ζp] where ζp = e2πi/p with p a prime. (This
is the primitive pth root of unity.)

Q[ζp] =
{
a0 + · · ·+ ap−2ζ

p−2
p : ai ∈ Q

}
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Number Rings

Definition

An element in a number field is called integral if it is the root of some
monic polynomial with coefficients in Z.
Call the set of integral elements in C the set of algebraic integers,
denoted it as A.
Define a number ring to be A ∩ K , where K is a number field.

If K = Q[i ], then A ∩ K = Z[i ]

If K = Q[ζp], then A ∩ K = Z[ζp]. This is not a trivial fact.
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Operation of Ideals

Let A be a Noetherian domain. We can define the product of ideals to be

IJ =

{
n∑

i=1

aibi : ai ∈ I , bi ∈ J

}

The set of ideals of A only forms a monoid with A as the identity, so we
introduce a generalized concept of ideals.

Definition

Let K be the fraction field of A. A A-submodule of K , M is called a
fractional ideal if there exists a nonzero a ∈ K such that aM ⊂ A. The
set of fractional ideals are denoted JA.

With the inverse defined as I−1 = {a ∈ K | aI ⊂ A}, JA becomes an
abelian group.
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Dedekind Domain

For number rings, JA has a nice description. Any ideal in a number ring is
of the form

I =
r∏

i=1

Pei
i =

∏
P prime ideal

PeP with eP ∈ Z≥0, eP = 0 a.e.

The eP = 0 a.e. means that eP 6= 0 for only finitely many prime ideals,
because this is a product over all primes. A ring satisfying this unique
factorization of ideals is called a Dedekind domain.

JA =

I

∣∣∣∣I =
∏

P prime ideal

PeP with eP ∈ Z, eP = 0 a.e.
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Ideal Class Group

Definition

A fractional ideal of A that is generated by an element a ∈ K is called a
principal ideal. It is usually denoted (a) or aA. The set of principal
fractional ideals is denoted IA.

IA is a subgroup of JA.

Definition

The ideal class group is the quotient group CA = JA/IA. The class
number is the order of the group CA.

It is not so easy to prove that class numbers are finite.
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Our Special Case

Theorem

Suppose p is an odd prime and p does not divide the class number of the
field Q(ζp), where ζp is a primitive pth root of unity. Then

xp + yp = zp, gcd(xyz , p) = 1

has no solutions in rational integers.

The restriction on xyz means that p does not divide x , y , and z .
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We factor the equation xp + yp = zp into

p−1∏
i=0

(x + ζ ipy) = zp (elements)

Let ζ = ζp. Here we consider as a multiplicative problem in the ring Z[ζ],
using ideals. We then get an equality of ideals

p−1∏
i=0

(x + ζ iy) = (z)p (ideals)
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Proposition

Let I1, ..., In, J be ideals of a Dedekind domain A, and I1, ..., In be pairwise
disjoint. If

I1 · · · In = Jm

then Ii = Km
i for some ideal Ki ⊂ A.

Lemma

The ideals (x + ζ iy), i = 0, 1, ..., p − 1 are pairwise relatively prime.

These ideals are pairwise disjoint. By the proposition, each must be the
pth power of another ideal Ai in Z[ζ]:

(x + ζ iy) = Ap
i
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Lemma

If G is a group of order n and x ∈ G , where xp = e ∈ G and p 6 |n, then
x = e

1 Ap
i IQ[ζ] = (x + ζ iy)IQ[ζ] = IQ[ζ] ∈ ClQ(ζ) because (x + ζ iy) is

principal.

2 Because Ap
i IQ[ζ] = IQ[ζ], and we have that p 6 | #ClQ(ζ), by Lemma,

we conclude that Ai IQ[ζ] = IQ[ζ], so Ai ∈ IQ[ζ] and each Ai is a
principal ideal.

3 Thus we can rewrite each (x + ζ iy) = (αp
i ) as ideals, so then we have

an equality of elements x + ζ iy = u · αp
i , with u a unit.

4 From here, we can do slightly long case-by-case checking and get a
contradiction.
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