Special Case of Fermat's Last Theorem

Joseph Cleary

Theorem

The equation $x^n + y^n = z^n$ has no nontrivial integer solutions for $n \ge 3$.

We can reduce to the case when n is a prime number.

Theorem

The equation $x^{p} + y^{p} = z^{p}$ has no nontrivial integer solutions for $p \ge 3$, with p a prime.

We will only sketch a proof a special case, with additional restrictions.

Pythagorean Theorem Example

Here we introduce the ring of the Gaussian Integers:

Definition

$$\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$$

Using this, we want to classify all primitive Pythagorean Triples, i.e. pairwise coprime integers x, y, z satisfying

$$x^2 + y^2 = z^2$$

Now that we are working in this ring, we can factor the equation into

$$(x+yi)(x-yi)=z^2$$

In the previous example, unique factorization of elements was our main tool. We want to apply this strategy to $p \ge 3$, but there is a problem, because not all number rings have unique factorization of elements.

Theorem

Suppose *p* is an odd prime and *p* does not divide the class number of the field $\mathbb{Q}(\zeta_p)$, where ζ_p is a primitive *p*th root of unity. Then

$$x^{p} + y^{p} = z^{p}, \qquad \gcd(xyz, p) = 1$$

has no nontrivial integer solutions.

The restriction on xyz means that p does not divide x, y, and z.

Definition

A **number field** is a subfield of \mathbb{C} having finite dimension as a vector space over \mathbb{Q} .

- $\mathbb{Q}[\sqrt{m}]$ where *m* is a nonsquare integer.
- $\mathbb{Q}[i] = \{a + bi : a, b \in \mathbb{Q}\}$
- We will use later that $\mathbb{Q}[\zeta_p]$ where $\zeta_p = e^{2\pi i/p}$ with p a prime. (This is the primitive pth root of unity.)

$$\mathbb{Q}[\zeta_p] = \left\{ a_0 + \dots + a_{p-2}\zeta_p^{p-2} : a_i \in \mathbb{Q} \right\}$$

Definition

An element in a number field is called **integral** if it is the root of some monic polynomial with coefficients in \mathbb{Z} . Call the set of integral elements in \mathbb{C} the set of **algebraic integers**, denoted it as \mathbb{A} .

Define a **number ring** to be $\mathbb{A} \cap K$, where K is a number field.

• If
$$K = \mathbb{Q}[i]$$
, then $\mathbb{A} \cap K = \mathbb{Z}[i]$

• If $K = \mathbb{Q}[\zeta_{\rho}]$, then $\mathbb{A} \cap K = \mathbb{Z}[\zeta_{\rho}]$. This is not a trivial fact.

Let A be a Noetherian domain. We can define the **product** of ideals to be

$$IJ = \left\{\sum_{i=1}^n a_i b_i : a_i \in I, b_i \in J\right\}$$

The set of ideals of A only forms a monoid with A as the identity, so we introduce a generalized concept of ideals.

Definition

Let *K* be the fraction field of *A*. A *A*-submodule of *K*, *M* is called a **fractional ideal** if there exists a nonzero $a \in K$ such that $aM \subset A$. The set of fractional ideals are denoted \mathcal{J}_A .

With the inverse defined as $I^{-1} = \{a \in K \mid aI \subset A\}$, \mathcal{J}_A becomes an abelian group.

For number rings, $\mathcal{J}_{\mathcal{A}}$ has a nice description. Any ideal in a number ring is of the form

$$I = \prod_{i=1}^{r} P_{i}^{e_{i}} = \prod_{P \text{ prime ideal}} P^{e_{P}} \text{ with } e_{P} \in \mathbb{Z}_{\geq 0}, e_{P} = 0 \text{ a.e.}$$

The $e_P = 0$ a.e. means that $e_P \neq 0$ for only finitely many prime ideals, because this is a product over all primes. A ring satisfying this unique factorization of ideals is called a **Dedekind domain**.

$$\mathcal{J}_A = \left\{ I \ \Big| \ I = \prod_{P \text{ prime ideal}} P^{e_P} \text{ with } e_P \in \mathbb{Z}, e_P = 0 \text{ a.e.}
ight\}$$

Definition

A fractional ideal of A that is generated by an element $a \in K$ is called a **principal ideal**. It is usually denoted (a) or aA. The set of principal fractional ideals is denoted \mathcal{I}_A .

 \mathcal{I}_A is a subgroup of \mathcal{J}_A .

Definition

The ideal class group is the quotient group $C_A = \mathcal{J}_A/\mathcal{I}_A$. The class number is the order of the group C_A .

It is not so easy to prove that class numbers are finite.

Theorem

Suppose *p* is an odd prime and *p* does not divide the class number of the field $\mathbb{Q}(\zeta_p)$, where ζ_p is a primitive *p*th root of unity. Then

$$x^{p} + y^{p} = z^{p}, \qquad \gcd(xyz, p) = 1$$

has no solutions in rational integers.

The restriction on xyz means that p does not divide x, y, and z.

We factor the equation $x^p + y^p = z^p$ into

$$\prod_{i=0}^{p-1} (x + \zeta_p^i y) = z^p \qquad (\text{elements})$$

Let $\zeta = \zeta_p$. Here we consider as a multiplicative problem in the ring $\mathbb{Z}[\zeta]$, using ideals. We then get an equality of ideals

$$\prod_{i=0}^{p-1} (x + \zeta^i y) = (z)^p \qquad (\text{ideals})$$

Proposition

Let $I_1, ..., I_n, J$ be ideals of a Dedekind domain A, and $I_1, ..., I_n$ be pairwise disjoint. If

$$I_1 \cdots I_n = J^m$$

then $I_i = K_i^m$ for some ideal $K_i \subset A$.

Lemma

The ideals $(x + \zeta^i y), i = 0, 1, ..., p - 1$ are pairwise relatively prime.

These ideals are pairwise disjoint. By the proposition, each must be the *p*th power of another ideal A_i in $\mathbb{Z}[\zeta]$:

$$(x+\zeta^i y)=A^p_i$$

Lemma

If G is a group of order n and $x \in G$, where $x^p = e \in G$ and $p \not| n$, then x = e

- $A_i^p I_{\mathbb{Q}[\zeta]} = (x + \zeta^i y) I_{\mathbb{Q}[\zeta]} = I_{\mathbb{Q}[\zeta]} \in Cl_Q(\zeta)$ because $(x + \zeta^i y)$ is principal.
- **2** Because $A_i^p I_{\mathbb{Q}[\zeta]} = I_{\mathbb{Q}[\zeta]}$, and we have that $p \not| \# CI_Q(\zeta)$, by Lemma, we conclude that $A_i I_{\mathbb{Q}[\zeta]} = I_{\mathbb{Q}[\zeta]}$, so $A_i \in I_{\mathbb{Q}[\zeta]}$ and each A_i is a principal ideal.
- **3** Thus we can rewrite each $(x + \zeta^i y) = (\alpha_i^p)$ as ideals, so then we have an equality of elements $x + \zeta^i y = u \cdot \alpha_i^p$, with u a unit.
- From here, we can do slightly long case-by-case checking and get a contradiction.