Special Case of Fermat’s Last Theorem

Joseph Cleary



Fermat's Last Theorem
The equation x” 4+ y" = z" has no nontrivial integer solutions for n > 3. \

We can reduce to the case when n is a prime number.

The equation xP + yP = zP has no nontrivial integer solutions for p > 3,
with p a prime.

We will only sketch a proof a special case, with additional restrictions.



Pythagorean Theorem Example

Here we introduce the ring of the Gaussian Integers:

Definition

Z[i] = {a+ bi: a,b € 7}

Using this, we want to classify all primitive Pythagorean Triples, i.e.
pairwise coprime integers x, y, z satisfying

X2 4y? =22

Now that we are working in this ring, we can factor the equation into
(x4 yi)(x — yi) = 2°

@ (x+yi) and (x — yi) are coprime.

Q@ x+yi=(m+ ni)?=(m?—n?) +2mni

Q@ x=m?—n%y=2mn,z=m?+ n? m,n relatively prime and not
both odd.



The Special Case

In the previous example, unique factorization of elements was our main
tool. We want to apply this strategy to p > 3, but there is a problem,
because not all number rings have unique factorization of elements.

Theorem
Suppose p is an odd prime and p does not divide the class number of the
field Q(¢p), where ¢, is a primitive pth root of unity. Then

xP+yP=2P  gcd(xyz,p) =1

has no nontrivial integer solutions.

The restriction on xyz means that p does not divide x, y, and z.



Number Fields

Definition

A number field is a subfield of C having finite dimension as a vector
space over Q.

e Q[v/m] where m is a nonsquare integer.

o Qi]={a+0bi:abeQ}

o We will use later that Q[¢,] where ¢, = €2™/P with p a prime. (This
is the primitive pth root of unity.)

Ql¢p) = {a0 + -+ ap—2(8?: 3 € Q}



Number Rings

Definition

An element in a number field is called integral if it is the root of some
monic polynomial with coefficients in Z.

Call the set of integral elements in C the set of algebraic integers,
denoted it as A.

Define a number ring to be A N K, where K is a number field.

o If K =QIi], then AN K = Z]i]
o If K =Q[¢p], then AN K = Z[(p]. This is not a trivial fact.



Operation of ldeals

Let A be a Noetherian domain. We can define the product of ideals to be

1J = {Za;b; 1 aj € /,b; GJ}
i=1

The set of ideals of A only forms a monoid with A as the identity, so we
introduce a generalized concept of ideals.

Definition

Let K be the fraction field of A. A A-submodule of K, M is called a
fractional ideal if there exists a nonzero a € K such that aM C A. The
set of fractional ideals are denoted J4.

With the inverse defined as /=1 = {a € K | al C A}, Ja becomes an
abelian group.



Dedekind Domain

For number rings, Ja has a nice description. Any ideal in a number ring is
of the form

| = HPiei — H P with ep € ZZOME‘P —0ae.

i=1 P prime ideal

The ep = 0 a.e. means that ep # 0 for only finitely many prime ideals,
because this is a product over all primes. A ring satisfying this unique
factorization of ideals is called a Dedekind domain.

TIa = /’/: [ P withepcZ,ep=0ae.

P prime ideal



Ideal Class Group

Definition

A fractional ideal of A that is generated by an element a € K is called a
principal ideal. It is usually denoted (a) or aA. The set of principal
fractional ideals is denoted Z4.

Z4 is a subgroup of Ja.

Definition

The ideal class group is the quotient group Ca = Ja/Za. The class
number is the order of the group Cx.

It is not so easy to prove that class numbers are finite.



Our Special Case

Theorem

Suppose p is an odd prime and p does not divide the class number of the
field Q({p), where ¢, is a primitive pth root of unity. Then

xP+yP=2zP  gad(xyz,p) =1

has no solutions in rational integers.

The restriction on xyz means that p does not divide x, y, and z.
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We factor the equation x? + yP = zP into

p—1

H(x + {l’;y) = zP (elements)
i=0

Let ( = (p. Here we consider as a multiplicative problem in the ring Z[(],
using ideals. We then get an equality of ideals

H(X +('y) = (2) (ideals)
i=0
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Proposition
Let i, ..., I, J be ideals of a Dedekind domain A, and I, ..., I, be pairwise
disjoint. If

ooy =Jm

then [; = K™ for some ideal K; C A.

The ideals (x + ('y),i = 0,1,...,p — 1 are pairwise relatively prime.

These ideals are pairwise disjoint. By the proposition, each must be the
pth power of another ideal A; in Z[(]:

(x+¢y) = A7
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If G is a group of order n and x € G, where xP = e € G and p /n, then
xX=e

o A{J/Q[d = (X + Cly)/@[g] = I@[C] S C/Q(C) because (X + C’y) is
principal.
Q@ Because A?lgj¢) = lg], and we have that p [ #Clo(C), by Lemma,

we conclude that A"/Q[C] = IQ[C]v so A; € /Q[C] and each A; is a

principal ideal.
© Thus we can rewrite each (x + ('y) = (af) as ideals, so then we have

an equality of elements x + 'y = u-a¥, with u a unit.

© From here, we can do slightly long case-by-case checking and get a
contradiction.
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