Solving Disentanglement Puzzles with Hints from Topology

Alexa Tsintolas

Topological Space

Let X be a nonempty set and T a collection of subsets of X

- X is the underlying set
- T is the topology on the set X
- The members of T are called open sets
- 1. $X \in T$
- 2. $\emptyset \in T$
- 3. If $O_1, O_2, \dots, O_n \in T$, then $O_1 \cap O_2 \cap \dots \cap O_n \in T$
- 4. If for each $\alpha \in I$, $O_{\alpha} \in T$, then $\bigcup_{\alpha \in I} O_{\alpha} \in T$

The pair of objects (X,T) is called a topological space.

Example of a Topological Space

• Discrete Topology: Let X be an arbitrary set. Let T be the collection of all subsets of X, $T = 2^{X}$.

Let's check:

- 1. $X \in T$
- 2. $\emptyset \in T$
- 3. If $O_1, O_2, \dots, O_n \in T$, then $O_1 \cap O_2 \cap \dots \cap O_n \in T$
- 4. If for each $\alpha \in I$, $O_{\alpha} \in T$, then $\bigcup_{\alpha \in I} O_{\alpha} \in T$

Therefore $(X, 2^X)$ is a topological space.

Continuity in a Topological Space

 A function f: (X,T) → (Y,T') is said to be continuous if for each open set O in Y, f⁻¹(O) is open in X.

Homeomorphism

- Topological spaces (X,T) and (Y,T') are called **homeomorphic** if there exist continuous functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ with $f^{-1} = g$ and $g^{-1} = f$
- Theorem: A necessary and sufficient condition that two topological spaces (X,T) and (Y,T') be homeomorphic is that there exist a function f: X → Y such that:
- 1. f is one-to-one
- 2. f is onto
- **3**. A subset O of X is open if and only if f(O) is open.

Example of Continuity and Homeomorphism

• Let f: $(X,T) \rightarrow (Y,T')$ be a homeomorphism. Let a third topological space (Z,T'') and a function h: $(Y,T') \rightarrow (Z,T'')$ be given. Prove that h is continuous if and only if hof is continuous.

- \rightarrow
- f continuous by homeomorphism
- The composition of continuous functions is continuous
- As h is continuous h○f must also be continuous

\leftarrow

- $h(O) = (h \circ f)(f^{-1}(O))$
- (hof) is continuous and f⁻¹
 is continuous by
 homeomorphism
- The composition of continuous functions is continuous
- Therefore, h is continuous

Manifolds

- A topological space $M \subset \mathbb{R}^m$ is a manifold if for every $x \in M$, an open set $O \subset M$ exists such that:
- **1**. x ∈ O
- 2. O is homeomorphic to \mathbb{R}^n
- 3. n is fixed for all $x \in M$ (dimension)

Configuration Space

- A configuration space is a manifold that comes from transformations.
- Can be thought of as degrees of freedom or all positions and orientations in space.
- SO(3) set of all rotations about the origin of \mathbb{R}^3 .

http://www.coppeliarobotics.com/helpFiles/en/motionPlanningModule.htm

Disentanglement Puzzles

Hint at the Solution

Solution: Watch Closely!

https://youtu.be/L---R9LaJXo?t=10s

Sources

- Introduction to Topology 3rd Edition by Bert Mendelson
- Ch. 4: The Configuration Space from Steven M. LaValle's *Planning Algorithms*