Differential Geometry: Curvature, Maps, and Pizza

Madelyne Ventura

University of Maryland

December 8th, 2015

• Differential Geometry studies the properties of curves and surfaces, and their higher dimensional analogs.

- Differential Geometry studies the properties of curves and surfaces, and their higher dimensional analogs.
- Curvature measures how fast a curve changes at a given point (or time)

- Differential Geometry studies the properties of curves and surfaces, and their higher dimensional analogs.
- Curvature measures how fast a curve changes at a given point (or time)

•
$$\kappa_g(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{(x'(t)^2 + y'(t)^2)^{3/2}}$$

- Differential Geometry studies the properties of curves and surfaces, and their higher dimensional analogs.
- Curvature measures how fast a curve changes at a given point (or time)

•
$$\kappa_g(t) = \frac{x'(t)y''(t) - x''(t)y'(t)}{(x'(t)^2 + y'(t)^2)^{3/2}}$$

• In general, curvature of a curve can be described by the reciprocal of the radius of the closest approximating circle to the curve. $\kappa_g = \frac{1}{R(t)}$

Figure 1: Curvature can be measured through osculating circles.

Fundamental Theorem of Planar Curves

- Given the curvature function $\kappa_g(t)$, there exists a regular curve parametrized by arc length $\vec{x} : I \to \mathbb{R}^2$ that has $\kappa_g(t)$ as its curvature function. Furthermore, the curve is uniquely determined up to a rigid motion in the plane.
- In other words, if you have the curvature function of a planar curve, you can work backwards to parametrize the curve

Curvature	Curve
0	Line
1	Unit Circle
$rac{1}{(1+t^2)^{3/2}}$	Parabola

Table 1: Examples of curves and their curvatures.

Principal Curvature

- At every point on a surface, there are two normal vectors, we chose one and declare it to be the positive direction.
- Sectional curvature is created using the chosen normal vector and the tangent vector at each point

Figure 2: An infinite amount of sections are created.

Principal Curvature

- At every point on a surface, there are two normal vectors, we chose one and declare it to be the positive direction.
- Sectional curvature is created using the chosen normal vector and the tangent vector at each point

Figure 2: An infinite amount of sections are created.

- Infinite amount of normal sections determine the curvature function
- Out of all the sectional curvatures, there is a κ_{\min} and a κ_{\max}
- The directions of the planes created by κ_{\min} and κ_{\max} are called the principal directions.

Gaussian Curvature

• Gaussian Curvature is calculated by the product of the principal curvatures. $K = \kappa_{\min} \kappa_{\max}$.

Gaussian Curvature

- Gaussian Curvature is calculated by the product of the principal curvatures. $K = \kappa_{\min} \kappa_{\max}$.
- Gaussian curvature is preserved under isometries, which are transformations that do not stretch or contract the distances. This fact is called Gauss's *Theorema Egregium*.

Gaussian Curvature

- Gaussian Curvature is calculated by the product of the principal curvatures. $K = \kappa_{\min} \kappa_{\max}$.
- Gaussian curvature is preserved under isometries, which are transformations that do not stretch or contract the distances. This fact is called Gauss's *Theorema Egregium*.

Figure 3: Positive, negative, and zero curvature respectively

Madelyne Ventura (University of Maryland)

Curvature, Maps, and Pizza

Sphere

•
$$K = \kappa_{\min}\kappa_{\max} = \frac{1}{r^2} > 0$$

Hyperbolic Paraboloid

•
$$K = \kappa_{\min}\kappa_{\max} = \frac{-1}{r^2} < 0$$

Cylinder

•
$$K = \kappa_{\min}\kappa_{\max} = 0 \cdot \kappa_{\min} = 0$$

Figure 4: One-Sheeted Hyperbolic Paraboloid has negative curvature.

Applications of Gaussian Curvature

Figure 5: Maps distort distance due to having no curvature

Applications of Gaussian Curvature

Figure 5: Maps distort distance due to having no curvature

Figure 6: Gaussian Curvature allows us to hold pizza correctly