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Classic Large Numbers

Factorial

100! ≈ 9.33× 10157

(100!)! >> 100!

Power towers

3 ↑↑ 4 = 333
3

= 37625597500000
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Graham’s Number

g64

gn =

{
3 ↑↑↑↑ 3 if n = 1

3 ↑gn−1 3 if n ≥ 2 and n ∈ N
So large that the observable universe is too small to contain the
digital representation of Grahams Number, even if each digit were one
Planck volume

1 Planck volume = 4.2217× 10−105m3
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Turing Machines

A Turing machine serves as a mathematical model for computation
Informally:

One-dimensional tape of cells that extends infinitely in either direction
Each cell contains a symbol from the “alphabet” of the machine

Typically 0, 1, and possibly a blank symbol

Machine contains a “head” that reads the symbol underneath it
Machine is in one of finitely many “states” that determine what the
machine does
At each step, based on the symbol that the head reads, the head will
overwrite the symbol that it just read and then move either to the left
or right and then enter a new state
The machine has a qHALT state. When the machine reaches the qHALT
state, the machine halts and whatever is written on the tape is
outputted
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Formal Definition of a Turing Machine

A Turing Machine M is described by a tuple (Γ,Q, δ) containing:

A set Γ of the symbols that M's tape can contain. Γ is typically called
the alphabet of M
A set Q of all possible states that M can be in. Q contains a
designated start state and qHALT
A transition function δ : Q × Γ 7→ Q × Γ× {L,R} which determines
based on the machines current state and the symbol it reads what
symbol the machine will write, what new state it will go to, and
whether the machine moves left or right
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Example of a Turing Machine that adds 1

1 When starting at the left end of the number, walk to the right end of
the number

2 Walking right to left, change all 1s to 0s

3 At first 0, change to 1 and halt

Figure: State Diagram for this Algorithm
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Example of a Turing Machine that adds 1
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Example of a Turing Machine that adds 1
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Computable and Uncomputable Functions

Definition

A function f : N 7→ N is said to be computable if there exists a TM M
such that if you give n as input to M, M will output f (n)

Probably almost every function you can think of is computable
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The Halting Problem

Define a function HALT which takes as input a Turing machine, M,
and some input, x , and outputs 1 if the given Turing machine halts
on x , 0 otherwise

Theorem

HALT is not computable by any Turing Machine
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The Busy Beaver Function

First introduced by Tibor Radó in his 1962 paper “On
Non-Computable Functions”

The Busy Beaver function Σ(n) is defined by the maximum number
of 1s written on a blank tape (all 0s) by a two symbol (0, 1), n-state
(not counting qHALT ) Turing machine that halts

Figure: 2-state TM that writes the most 1’s
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Example of a 2-state Busy Beaver
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Example of a 2-state Busy Beaver
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Maximum Shifts Function

Similar to the Busy Beaver Function

The Maximum shifts function S(n) is defined by the maximum
number of shifts on a blank tape (left or right) taken by a two symbol
(0, 1), n-state (not counting qHALT ) Turing machine that halts
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Values of Σ(n) and S(n)

Σ(1) = 1, S(1) = 1
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Σ(2) = 4, S(2) = 6
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Values of Σ(n) and S(n)

Σ(1) = 1, S(1) = 1

Σ(2) = 4, S(2) = 6

Σ(3) = 6, S(3) = 21

Σ(4) = 13,S(4) = 107

Σ(5) ≥ 4098, S(5) ≥ 47176870
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Values of Σ(n) and S(n)

Σ(1) = 1, S(1) = 1

Σ(2) = 4, S(2) = 6

Σ(3) = 6, S(3) = 21

Σ(4) = 13,S(4) = 107

Σ(5) ≥ 4098, S(5) ≥ 47176870

Σ(6) > 3.5× 1018267,S(6) > 7.4× 1036534
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How Fast do Σ and S Grow?

Σ and S are both uncomputable

The functions Σ and S grow faster than any computable function

If we had a computable function f (n) that grew faster than Σ or S , we
could use f to compute HALT

Σ(64) has been proven to be larger than Graham's number

A 64 state TM was created that follows a fast-growing hierarchy that
dwarfs Graham's Number
Some sources say even Σ(18) is larger than Graham's number

Σ(1919) is unknowable given the usual axioms of set theory (ZFC set
theory with the axiom of choice)

A 1919 state TM that cannot be proven to run forever
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Application of S(n)

Some unsolved conjectures in mathematics (Twin primes, Goldbach,
Collatz, etc.) could be checked using the values of S(n)

Suppose we wrote a Turing machine with 100 states that checked the
Collatz conjecture and that we have an upper bound for the value of
S(100)

We could run the TM for S(100) steps and if it does not halt, we
know that it will never halt so the Collatz conjecture would be true
(this TM only halts if a counterexample is found)!
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Good News?

This application is not practical for several reasons

It is very difficult to find values (or even upper bounds) for S(n)
We do not have enough computational capacity in the known part of
the universe to even perform S(6) operations

Not many useful programs only have 6 states

Finding values for Σ and S are in some regard, much “harder” than
these unproved conjectures because they encapsulate these
conjectures!
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Beyond Busy Beavers

We can give Turing machines access to an Oracle which can give the
TM more information

Oracle machines can query the oracle and determine whether what is
written on the tape is part of a predetermined set
The HALT-oracle machine will check whether or not the TM and input
encoded on the tape will halt

TMs with oracles have larger values of Σ and S
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