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a1 =1 (mod p)

Definitions

In general, however, satisfaction of this congruence is not
strong enough to imply primality.

Example
Let N =124, a =5. 124 is not prime, but
5123 = 1 (mod 124)

o’

N is a pseudoprime base a (denoted psp base a) if it satisfies
the congruence:

a"=1 =1 (mod N)
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Let P and Q be integers such that the discriminant
Definitions

D=P?>—4Q+#0
A Lucas sequence {Uy} is defined as follows:

Up=0,U; =1

Uk+2 = PUk41 — QU

We also define the Jacobi symbol:
D 1 if Dis a square (mod N) i.e. D = a? for some a
() = ¢ —1 if Dis not a square (mod N)
0 if N divides D
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1
1
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5 6 7 8 9 10

Q = —3. Then D = 13. The sequence starts:
2 3 4
1 4 7 19 40 97 217 508 1159
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Let P=1,Q = —3. Then D = 13. The sequence starts:
2
1

5 6 7 8 9 10

10 1 3 4
Uc:0 1 4 7 19 40 97 217 508 1159

5 exhibits the behavior above, as 5 1 6, (%) = —1, and 5 | 40.
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S Let P=1,Q = —3. Then D = 13. The sequence starts:
Example
k :0 1 2 3 4 5 6 7 8 9 10
Ucs:0 1 1 4 7 19 40 97 217 508 1159

5 exhibits the behavior above, as 5 1 6, (%) = —1, and 5 | 40.
Similarly, 716, (%) = —1, and 217 = 7 31.
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Example
S Let P=1,Q = —3. Then D = 13. The sequence starts:
Example
k :01 2 3 4 5 6 7 8 9 10
Uc:0 1 1 4 7 19 40 97 217 508 1159

5 exhibits the behavior above, as 5 1 6, (%) = —1, and 5 | 40.
Similarly, 716, (%) = —1, and 217 = 7 31.

When looking at N + 1, we will choose D such that

(—) = —1, so knowing that N | Un41 is analogous to knowing

that p is psp base a, where N | aV=1 — 1.
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Suppose we have factored N — 1 completely.
If for each p; dividing N — 1 there exists an a; such that N is
psp base a;, but

Theorem 1
N—1

a,” #1(mod N)

then N is prime.
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set U of Lucas sequences {U,((')} whose shared discriminant D

satisfies D
)= _1
(%)

Theorem 13 If for each qp, dividing N 4 1 there exists a Lucas sequence
U™ € U such that

Nate Fulton

N | UG,

but
Nt U
am

then N is prime.
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It is relatively easy to check that N is psp base 2 and base 7.
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Example 25 =785229716 # 1 (mod N)

27 =507218236 %1 (mod N)
2101 = 954146440 # 1 (mod N)
28 = 905900321 # 1 (mod N)

We conclude that N is prime.
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We choose D =5 and get (%) = -1
For each of the primes g dividing N 4+ 1, we must choose P and
Q such that N ’ Uns1, but Nf Unir:

q

For g = 2, the sequence with P =5, Q@ = 5 works.

For g = 7, the sequence with P =9, Q = 19 works.

For g = 7333 and g = 10459, the Fibonacci numbers (P =1,
Q = —1) work.
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Let N =230 + 33 = 1073741857.
Then N+1=2-7-7333-10459.
We choose D =5 and get (%) = -1
For each of the primes g dividing N 4+ 1, we must choose P and
Q such that N ’ Uns1, but Nf Unir:

q

For g = 2, the sequence with P =5, Q@ = 5 works.

For g = 7, the sequence with P =9, Q = 19 works.

For g = 7333 and g = 10459, the Fibonacci numbers (P =1,
Q = —1) work.

As an example of what it means to "work,” consider the last
prime. What we are saying is that N ¥ Uniz = Uioo662-

Since we have a working sequence for ealch of the primes
dividing N + 1, we conclude that N is prime.
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New Primality Criteria and Factorizations of 2™ + 1
John Brillhart, D. H. Lehmer and J. L. Selfridge
Mathematics of Computation

Vol. 29, No. 130 (Apr., 1975) , pp. 620-647
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2005583
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