First-Order Logic++

Carlos Garcia

UMD

December 12, 2013

Carlos Garcia (UMD)

First-Order Logic++

December 12, 2013 1 / 27

Introduction

Soundness, Completeness

Ax-Grothendieck Theorem

Bibliography

Basics

Here are some of the basic things

- ► Languages
- ► Sentence
- \blacktriangleright *L*-structures/Models
 - ▶ The Language of Groups: $(\cdot, ^{-1}, e)$ has the structure $\mathbb{R} \setminus \{0\}$
 - ▶ The Language of Rings: $(\cdot, +, 0, 1)$ has the structure \mathbb{Z}
- ▶ The symbol \models
 - $\mathscr{A} \models \sigma$: the formula σ is true in the model \mathscr{A} .
 - ▶ $\Gamma \models \sigma$: every *L*-structure *A* that models Γ also models σ

Proofs

The symbol \vdash

• $\Gamma \vdash \sigma$: there exists a proof from Γ to σ

But what is a proof?

► A finite sequence of sentences where each sentence is something from your Proof System.

Proof System

- \blacktriangleright A: Logical Axioms
 - $\bullet \quad \forall x P(x) \to \exists x P(x)$
 - $\blacktriangleright A \lor \neg A$
- Γ : Assumptions/Axioms

$$\blacktriangleright \ \forall x, y(x \cdot y = y \cdot x)$$

$$\bullet \underbrace{1+1+\ldots+1}_{p} = 0$$

▶ Results derived from Modus Ponens $(\alpha \rightarrow \beta, \alpha, \text{ so } : \beta)$

Soundness and Completeness

Soundness

 $\blacktriangleright \ \Gamma \vdash \sigma \Rightarrow \Gamma \models \sigma$

Completeness

 $\blacktriangleright \ \Gamma \models \sigma \Rightarrow \Gamma \vdash \sigma$

We say Γ is satisfiable if there exists a structure \mathscr{A} such that $\mathscr{A} \models \Gamma$ We say Γ is consistent if $\Gamma \not\vdash \bot$, i.e. that there is no proof of contradiction.

Additionally:

- Soundess \Leftrightarrow (Γ Satisfiable \Rightarrow Γ Consistent)
- Completeness \Leftrightarrow (Γ Consistent \Rightarrow Γ Satisfiable)
- \blacktriangleright Hence: Γ Satisfiable $\Leftrightarrow \Gamma$ Consistent

Statement of the Theorem

Theorem: For all fields \mathscr{F} that model ACF_p or ACF_0 , if $f: F^n \to F^n$ is an injective polynomial function, then it must also be surjective

Corollary: If $f : \mathbb{C}^n \to \mathbb{C}^n$ is an injective polynomial function, then it must also be surjective.

Our Proof System

- \blacktriangleright A: Logical Axioms.
- ▶ Γ : Field Axioms.

•
$$\alpha_p : \underbrace{1+1+1+\ldots+1}_p = 0$$
 for p prime

► Fact:
$$\Gamma \cup \{\alpha_p\} \vdash \neg \alpha_q$$
 for all primes $q \neq p$

$$\blacktriangleright \ \psi_n : \forall a_0 \forall a_1 \dots \forall a_n \exists x (a_0 + a_1 x + \dots + a_n x^n = 0)$$

•
$$ACF_p: \Gamma \cup \alpha_p \cup \{\psi_n\}_{n \in \mathbb{N}}.$$

• $ACF_0: \Gamma \cup \{\neg \alpha_p\}_p \ prime \cup \{\psi_n\}_{n \in \mathbb{N}}.$

Fact: ACF_p and ACF_0 are complete theories.

•
$$T \cup \{\sigma\}$$
 is satisfiable $\Rightarrow \sigma \in T$ or

$$\blacktriangleright T \models \sigma \lor T \models \neg \sigma$$

Ax-Grothendieck Theorem

More Preliminary details

Consider the field:

$$\mathbb{F}_p := \frac{\mathbb{Z}}{p\mathbb{Z}}$$

for some prime p.

Consider the field:

$$\mathbb{F}_p := \frac{\mathbb{Z}}{p\mathbb{Z}}$$

for some prime p. Now consider a larger field by adjoining a root of unity:

$$\mathbb{F}_{p^k} = \mathbb{F}_p(\zeta_{p^k - 1})$$

Consider the field:

$$\mathbb{F}_p := \frac{\mathbb{Z}}{p\mathbb{Z}}$$

for some prime p.

Now consider a larger field by adjoining a root of unity:

$$\mathbb{F}_{p^k} = \mathbb{F}_p(\zeta_{p^k - 1})$$

Now consider the union of all these fields:

$$F = \bigcup_{k \in \mathbb{N}} \mathbb{F}_{p^k}$$

Consider the field:

$$\mathbb{F}_p := rac{\mathbb{Z}}{p\mathbb{Z}}$$

for some prime p.

Now consider a larger field by adjoining a root of unity:

$$\mathbb{F}_{p^k} = \mathbb{F}_p(\zeta_{p^k - 1})$$

Now consider the union of all these fields:

$$F = \bigcup_{k \in \mathbb{N}} \mathbb{F}_{p^k} = \overline{\mathbb{F}}_p$$

Consider the field:

$$\mathbb{F}_p := rac{\mathbb{Z}}{p\mathbb{Z}}$$

for some prime p.

Now consider a larger field by adjoining a root of unity:

$$\mathbb{F}_{p^k} = \mathbb{F}_p(\zeta_{p^k - 1})$$

Now consider the union of all these fields:

$$F = \bigcup_{k \in \mathbb{N}} \mathbb{F}_{p^k} = \overline{\mathbb{F}}_p$$

This is the field we will be working with for this proof.

A Final Observation

For any two fields

 $\mathbb{F}_{p^r}, \mathbb{F}_{p^s}$

there is always a field above both of them, e.g.

 $\mathbb{F}_{p^{lcm(r,s)}}$

Some Algebra

Easy to show that F has characteristic p

▶ 1 is still 1, so
$$\underbrace{1+1+\ldots+1}_{p}$$
 is still 0.

Lemma: F is algebraically closed (and hence $F \models ACF_p$) **Proof**: If you know algebra, easy to show, but will not prove here.

Some Simpler Algebra

I now wish to prove the Ax-Grothendieck Theorem for $F = \bigcup_{k \in \mathbb{N}} \mathbb{F}_{p^k}$. Let $\phi_{n,d}$ be the formula stating that all *n*-tuples of polynomials of at most degree *d* which are injective (as functions $F^n \to F^n$) are surjective.

Proof: Let f be an injective polynomial function from F^n to F^n where each coordinate function is of at most degree d.

Let r be such that all of the coefficients of all of the coordinate functions (of which there are a finite amount) are in \mathbb{F}_{p^r}

Assume f is not surjective. Thus there must be some $x_0 \in F^n$ not in the image of f. Since $x_0 \in (\bigcup_{k \in \mathbb{N}} \mathbb{F}_{p^k})^n$, let s be such that $x_0 \in \mathbb{F}_{p^s}^n$.

Finally, let m := lcm(r, s), which then means that all of the coefficients of f and the coordinates of x_0 are members of \mathbb{F}_{p^m} .

Carlos Garcia (UMD)	First-Order Logic++	December 12, 2013	15 / 27

Some Simpler Algebra

Thus we have that $f : \mathbb{F}_{p^m}^n \to \mathbb{F}_{p^m}^n$ is injective but not surjective since it misses x_0 .

However, since $\mathbb{F}_{p^m}^n$ is finite, f is injective, and (clearly) \mathbb{F}_{p^m} is of the same size as \mathbb{F}_{p^m} , that must mean that f is surjective. Since we assumed that it wasn't, we get a contradiction.

Thus f is surjective and $F \models \phi_{n,d}$.

Generalization

Now that Ax-Grothendieck is true for some model F of ACF_p , I wish to show that this means it's true for all models.

Proof: We now have that $F \models ACF_p$ and $F \models \phi_{n,d}$. This is equivalent to saying $F \models ACF_p \cup \{\phi_{n,d}\}$, which by definition means that $ACF_p \cup \{\phi_{n,d}\}$ is satisfiable.

Since ACF_p is a complete theory, this means by the first definition we used that $\phi_{n,d} \in ACF_p$. Since this statement contains no mention of models, it must hold regardless of model and hence be true for all models.

Our Proof System

- \blacktriangleright A: Logical Axioms.
- ▶ Γ : Field Axioms.

•
$$\alpha_p : \underbrace{1+1+1+\ldots+1}_p = 0$$
 for p prime

► Fact: $\Gamma \cup \{\alpha_p\} \vdash \neg \alpha_q$ for all primes $q \neq p$

- $\blacktriangleright \ \psi_n : \forall a_0 \forall a_1 \dots \forall a_n \exists x (a_0 + a_1 x + \dots + a_n x^n = 0)$
- $ACF_p: \Gamma \cup \alpha_p \cup \{\psi_n\}_{n \in \mathbb{N}}.$
- $ACF_0: \Gamma \cup \{\neg \alpha_p\}_p \ prime \cup \{\psi_n\}_{n \in \mathbb{N}}.$

Fact: ACF_p and ACF_0 are complete theories.

- $T \cup \{\sigma\}$ is satisfiable $\Rightarrow \sigma \in T$ or
- $\blacktriangleright T \models \sigma \lor T \models \neg \sigma$

Generalization

Now that Ax-Grothendieck is true for some model F of ACF_p , I wish to show that this means it's true for all models.

Proof: We now have that $F \models ACF_p$ and $F \models \phi_{n,d}$. This is equivalent to saying $F \models ACF_p \cup \{\phi_{n,d}\}$, which by definition means that $ACF_p \cup \{\phi_{n,d}\}$ is satisfiable.

Since ACF_p is a complete theory, this means by the first definition we used that $\phi_{n,d} \in ACF_p$. Since this statement contains no mention of models, it must hold regardless of model and hence be true for all models.

The Actual Logic

Finally, I wish to show that Ax-Grothendieck is true in ACF_0 (and hence true for \mathbb{C}).

Proof: Assume there is some $\phi_{n,d}$ such that $ACF_0 \not\models \phi_{n,d}$.

Since ACF_0 is a complete theory, by the second (equivalent) definition we have that $ACF_0 \models \neg \phi_{n,d}$. By completeness this means that $ACF_0 \vdash \neg \phi_{n,d}$

Since proofs are finite, that must mean that in a proof from ACF_0 to $\neg \phi_{n,d}$ there were at most a finite amount of $\neg \alpha_p$'s. Let q be a prime such that

 $q > max\{p | \neg \alpha_p \text{ appears in the proof from } ACF_0 \text{ to } \neg \phi_{n,d}\}$

Our Proof System

- \blacktriangleright A: Logical Axioms.
- ▶ Γ : Field Axioms.

•
$$\alpha_p : \underbrace{1+1+1+\ldots+1}_p = 0$$
 for p prime

► Fact:
$$\Gamma \cup \{\alpha_p\} \vdash \neg \alpha_q$$
 for all primes $q \neq p$

$$\blacktriangleright \ \psi_n : \forall a_0 \forall a_1 \dots \forall a_n \exists x (a_0 + a_1 x + \dots + a_n x^n = 0)$$

•
$$ACF_p: \Gamma \cup \alpha_p \cup \{\psi_n\}_{n \in \mathbb{N}}.$$

• $ACF_0: \Gamma \cup \{\neg \alpha_p\}_p \ prime \cup \{\psi_n\}_{n \in \mathbb{N}}.$

Fact: ACF_p and ACF_0 are complete theories.

•
$$T \cup \{\sigma\}$$
 is satisfiable $\Rightarrow \sigma \in T$ or

$$\blacktriangleright T \models \sigma \lor T \models \neg \sigma$$

The Actual Logic

Finally, I wish to show that Ax-Grothendieck is true in ACF_0 (and hence true for \mathbb{C}).

Proof: Assume there is some $\phi_{n,d}$ such that $ACF_0 \not\models \phi_{n,d}$.

Since ACF_0 is a complete theory, by the second (equivalent) definition we have that $ACF_0 \models \neg \phi_{n,d}$. By completeness this means that $ACF_0 \vdash \neg \phi_{n,d}$

Since proofs are finite, that must mean that in a proof from ACF_0 to $\neg \phi_{n,d}$ there were at most a finite amount of $\neg \alpha_p$'s. Let q be a prime such that

 $q > max\{p | \neg \alpha_p \text{ appears in the proof from } ACF_0 \text{ to } \neg \phi_{n,d}\}$

The Actual Logic

By that fact from earlier, this means that all $\neg \alpha_p$ also hold in ACF_q .

Hence the proof from ACF_0 to $\neg \phi_{n,d}$ is also a proof from ACF_q to $\neg \phi_{n,d}$, which contradicts what we already proved earlier.

 $\therefore ACF_0 \models \phi_{n,d} \text{ for all } \phi_{n,d}.$

Our Proof System

- \blacktriangleright A: Logical Axioms.
- ▶ Γ : Field Axioms.

•
$$\alpha_p : \underbrace{1+1+1+\ldots+1}_p = 0$$
 for p prime

► Fact:
$$\Gamma \cup \{\alpha_p\} \vdash \neg \alpha_q$$
 for all primes $q \neq p$

$$\blacktriangleright \ \psi_n : \forall a_0 \forall a_1 \dots \forall a_n \exists x (a_0 + a_1 x + \dots + a_n x^n = 0)$$

•
$$ACF_p: \Gamma \cup \alpha_p \cup \{\psi_n\}_{n \in \mathbb{N}}.$$

• $ACF_0: \Gamma \cup \{\neg \alpha_p\}_p \ prime \cup \{\psi_n\}_{n \in \mathbb{N}}.$

Fact: ACF_p and ACF_0 are complete theories.

•
$$T \cup \{\sigma\}$$
 is satisfiable $\Rightarrow \sigma \in T$ or

$$\blacktriangleright T \models \sigma \lor T \models \neg \sigma$$

The Actual Logic

By that fact from earlier, this means that all $\neg \alpha_p$ also hold in ACF_q .

Hence the proof from ACF_0 to $\neg \phi_{n,d}$ is also a proof from ACF_q to $\neg \phi_{n,d}$, which contradicts what we already proved earlier.

 $\therefore ACF_0 \models \phi_{n,d} \text{ for all } \phi_{n,d}.$

Bibliography

- ▶ A Mathematical Introduction to Logic Enderton, Herbert B.
- ► Axs Theorem: An Application of Logic to Ordinary Mathematics OConnor, Michael
- ► Sam Bloom

Bibliography

Questions?