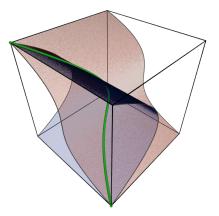
Bezout's Theorem and Applications

Nicholas Hiebert-White

December 3, 2018

What is Algebraic Geometry?

It's the study of solutions of systems of polynomial equations (originally).



The "Twisted Cubic" - The Solution set of $XZ - Y^2 = 0$, $Y - Z^2 = 0$, X - YZ = 0 (Twisted Cubic)

Affine Plane Curves

Definition

The **affine plane** over a field k,

$$\mathbb{A}^2(k) = \{(x,y) \mid x,y \in k\}$$

is the cartesian product of k with itself.

Definition

An affine plane curve C is a set of the form

$$C := V(F) := \{(x, y) \in \mathbb{A}^2(k) \mid F(x, y) = 0\}$$

for some polynomial $F \in k[X, Y]$.

Affine Plane Curves

Definition

The **affine plane** over a field k,

$$\mathbb{A}^2(k) = \{(x,y) \mid x,y \in k\}$$

is the cartesian product of k with itself.

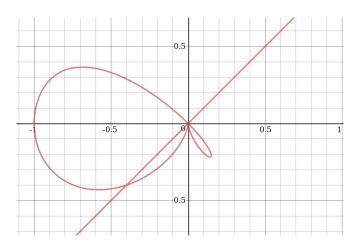
Definition

An **affine plane curve** *C* is a set of the form

$$C := V(F) := \{(x, y) \in \mathbb{A}^2(k) \mid F(x, y) = 0\}$$

for some polynomial $F \in k[X, Y]$.

Example



Affine plane curve $V(X^4-X^2Y^2+X^5-Y^5)$ in $\mathbb{A}^2(\mathbb{R})$

Motivating Question

If k is a field, and F is a nonzero polynomial in k[X], then F has at most $\deg(F)$ roots. In particular if k is algebraically closed F has exactly $\deg(F)$ roots counting multiplicities.

Question

Given two polynomials $F, G \in k[X, Y]$, how many points are there in $V(F) \cap V(G)$?

Motivating Question

If k is a field, and F is a nonzero polynomial in k[X], then F has at most $\deg(F)$ roots. In particular if k is algebraically closed F has exactly $\deg(F)$ roots counting multiplicities.

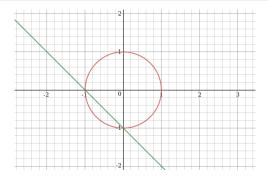
Question

Given two polynomials $F, G \in k[X, Y]$, how many points are there in $V(F) \cap V(G)$?

Intersections of Plane Curves

Theorem

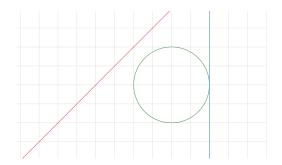
Let $F, G \in k[X, Y]$ be nonzero polynomials that share no common factors. Then the affine plane curves V(F) and V(G) intersect at most at deg(F) deg(G) points.



The affine plane curves $V(X^2+Y^2-1)$ and V(X+Y+1) in $\mathbb{A}^2(\mathbb{R})$

Example

Sometimes curves intersect at less than deg(F) deg(G) points.



What is Missing?

- We need k to be an algebraically closed field $(V(X^2 + Y^2 + 1)$ is empty in $\mathbb{A}^2(\mathbb{R})$ but not in $\mathbb{A}^2(\mathbb{C})$.)
- We need a "bigger" space (Parallel lines do not intersect in $\mathbb{A}^2(k)$)
- We need a notion of intersection multiplicity.
 (The intersection of the circle with its tangent line should be counted twice)

What is Missing?

- We need k to be an algebraically closed field $(V(X^2 + Y^2 + 1)$ is empty in $\mathbb{A}^2(\mathbb{R})$ but not in $\mathbb{A}^2(\mathbb{C})$.)
- We need a "bigger" space (Parallel lines do not intersect in $\mathbb{A}^2(k)$)
- We need a notion of intersection multiplicity.
 (The intersection of the circle with its tangent line should be counted twice)

What is Missing?

- We need k to be an algebraically closed field $(V(X^2 + Y^2 + 1)$ is empty in $\mathbb{A}^2(\mathbb{R})$ but not in $\mathbb{A}^2(\mathbb{C})$.)
- We need a "bigger" space (Parallel lines do not intersect in $\mathbb{A}^2(k)$)
- We need a notion of intersection multiplicity.
 (The intersection of the circle with its tangent line should be counted twice)

Intersection Multiplicity

There is a "technical" definition of intersection multiplicity:

Definition

For any $F, G \in k[X, Y]$ and $P \in \mathbb{A}^2(k)$, the **intersection** multiplicity of F and G at P is:

$$I(F \cap G, P) := dim_k \left(\frac{\mathcal{O}_P(\mathbb{A}^2)}{(F, G)} \right)$$

But it is also completely determined by a set of basic properties, such as:

- ① $I(P, F \cap G)$ is nonnegative integer, or infinity (iff F, G share common component at P).
- $(P, F \cap G) = 0 \text{ iff } P \notin V(F) \cap V(G)$
- **3** $I(P, F \cap G) = I(P, G \cap F)$
- $(I(F_1F_2 \cap G, P) = I(F_1 \cap G, P) + I(F_2 \cap G, P)$

Intersection Multiplicity

There is a "technical" definition of intersection multiplicity:

Definition

For any $F, G \in k[X, Y]$ and $P \in \mathbb{A}^2(k)$, the **intersection** multiplicity of F and G at P is:

$$I(F \cap G, P) := dim_k \left(\frac{\mathcal{O}_P(\mathbb{A}^2)}{(F, G)} \right)$$

But it is also completely determined by a set of basic properties, such as:

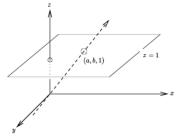
- **1** $I(P, F \cap G)$ is nonnegative integer, or infinity (iff F, G share common component at P).
- $I(P, F \cap G) = 0 \text{ iff } P \notin V(F) \cap V(G)$
- $(P, F \cap G) = I(P, G \cap F)$
- $I(F_1F_2 \cap G, P) = I(F_1 \cap G, P) + I(F_2 \cap G, P)$

Projective Plane

Definition

The **Projective Plane** $\mathbb{P}^2(k)$ is set of 1-dimensional subspaces of k^3 , or equivalence classes of points $(x,y,z) \in k^3$ under $(x,y,z) \sim (x',y',z')$ iff $(x,y,z) = (\lambda x',\lambda y',\lambda z')$ for some $\lambda \in k^*$

- The lines that do not lie in the plane Z=0 form an affine plane.
- The lines in the plane are called the "points at infinity".



Bézout's Theorem

Definition

A **projective plane curve** *C* is a set of the form

$$C := V(F) := \{ [x : y : z] \in \mathbb{P}^2(k) \mid F(x, y, z) = 0 \}$$

for some homogeneous polynomial $F \in k[X, Y, Z]$.

Theorem (Bézout's Theorem)

Let k be an algebraically closed field. Let $F, G \in k[X, Y, Z]$ be nonzero homogeneous polynomials that share no common factors. Then the projective plane curves V(F) and V(G) intersect at deg(F) deg(G) points counting intersection multiplicities.

Bézout's Theorem

Definition

A **projective plane curve** *C* is a set of the form

$$C := V(F) := \{ [x : y : z] \in \mathbb{P}^2(k) \mid F(x, y, z) = 0 \}$$

for some homogeneous polynomial $F \in k[X, Y, Z]$.

Theorem (Bézout's Theorem)

Let k be an algebraically closed field. Let $F, G \in k[X, Y, Z]$ be nonzero homogeneous polynomials that share no common factors. Then the projective plane curves V(F) and V(G) intersect at deg(F) deg(G) points counting intersection multiplicities.

Results

Proposition

Let C, C' projective cubics (curves defined by homogeneous polynomials of degree 3). If P_1, \ldots, P_9 are the points of intersection of C with C' and there is a conic Q intersecting with C exactly at P_1, \ldots, P_6 . Then P_7, P_8, P_9 lie on the same line.

Corollary (Pascal)

If a hexagon is inscribed in an irreducible conic, then the opposite sides meet at collinear points.

Corollary (Pappus)

Let L_1, L_2 two lines and P_1, P_2, P_3 and Q_1, Q_2, Q_3 points in L_1 and L_2 respectively, but not in $L_1 \cap L_2$. For $i, j, k \in \{1, 2, 3\}$ distinct, let R_k be the point of intersection of the line through P_i and Q_j with the line through P_j and Q_k . Then R_1, R_2, R_3 are collinear.

Results

Proposition

Let C, C' projective cubics (curves defined by homogeneous polynomials of degree 3). If P_1, \ldots, P_9 are the points of intersection of C with C' and there is a conic Q intersecting with C exactly at P_1, \ldots, P_6 . Then P_7, P_8, P_9 lie on the same line.

Corollary (Pascal)

If a hexagon is inscribed in an irreducible conic, then the opposite sides meet at collinear points.

Corollary (Pappus)

Let L_1, L_2 two lines and P_1, P_2, P_3 and Q_1, Q_2, Q_3 points in L_1 and L_2 respectively, but not in $L_1 \cap L_2$. For $i, j, k \in \{1, 2, 3\}$ distinct, let R_k be the point of intersection of the line through P_i and Q_j with the line through P_j and Q_k . Then R_1, R_2, R_3 are collinear.

Results

Proposition

Let C, C' projective cubics (curves defined by homogeneous polynomials of degree 3). If P_1, \ldots, P_9 are the points of intersection of C with C' and there is a conic Q intersecting with C exactly at P_1, \ldots, P_6 . Then P_7, P_8, P_9 lie on the same line.

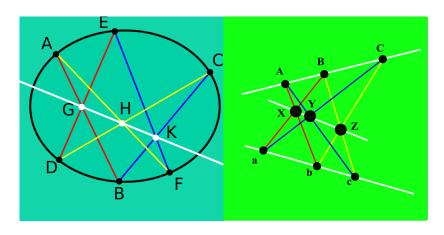
Corollary (Pascal)

If a hexagon is inscribed in an irreducible conic, then the opposite sides meet at collinear points.

Corollary (Pappus)

Let L_1, L_2 two lines and P_1, P_2, P_3 and Q_1, Q_2, Q_3 points in L_1 and L_2 respectively, but not in $L_1 \cap L_2$. For $i,j,k \in \{1,2,3\}$ distinct, let R_k be the point of intersection of the line through P_i and Q_j with the line through P_j and Q_k . Then R_1, R_2, R_3 are collinear.

Pascal's and Pappus's Theorems



Left: Example of Pascal's Theorem

Right: Example of Pappus's Theorem

Elliptic Curves

Let C a nonsingular cubic and O a point in C. For $P,Q\in C$, let L the line from P to Q and

$$P \cdot Q = (L \bullet C) - P - Q$$

Define also

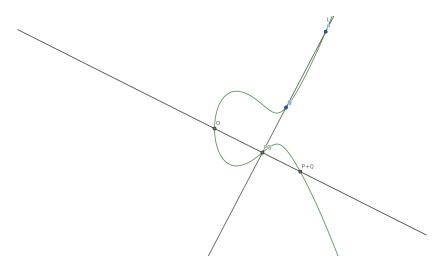
$$P \oplus Q = O \cdot (P \cdot Q)$$

$\mathsf{Theorem}$

 (C,\oplus) is an abelian group.

Such curves C with a choice of point O are called elliptic curves and are used widely in number theory.

Elliptic Curves (continued)



Addition on an elliptic curve

References

W. Fulton. Algebraic Curves: An Introduction to Algebraic Geometry. 2008.