An Introduction to Schemes

Nicholas Hiebert-White Advisor: Patrick Daniels

May 8, 2019

Algebraic Varieties

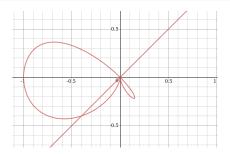
Let k be an algebraically closed field.

Definition

For some set of polynomials $\{f_i\}_{i\in I}\subseteq k[x_1,\ldots,x_n]$, define:

$$V(\{f_i\}_{i\in I}):=\{(a_1,\ldots,a_n)\in\mathbb{A}^n\mid f_i(a_1,\ldots,a_n)=0\}$$

A set of this form is called an affine algebraic set.



Affine plane curve $\mathit{V}(\mathit{X}^4-\mathit{X}^2\mathit{Y}^2+\mathit{X}^5-\mathit{Y}^5)$ in $\mathbb{A}^2_{\mathbb{R}}$

Ingredients of a Scheme

We want to generalize these varieties to:

- Handle Non-Algebraically closed fields (And rings in general)
- 4 Handle multiplicities
- Onnect affine and projective varieties

We need:

- A set of "points"
- A topology on these points
- Functions on the open sets of these points

We'll use the scheme version of the affine line $\mathbb{A}^1_{\mathbb{C}}$ and the integers \mathbb{Z} as examples.

Ingredients of a Scheme

We want to generalize these varieties to:

- Handle Non-Algebraically closed fields (And rings in general)
- Handle multiplicities
- Onnect affine and projective varieties

We need:

- A set of "points"
- A topology on these points
- § Functions on the open sets of these points

We'll use the scheme version of the affine line $\mathbb{A}^1_\mathbb{C}$ and the integers \mathbb{Z} as examples.

The "Points"

Take a commutative ring R with unity.

Definition

The **spectrum** of R, Spec(R), is the set of prime ideals \mathfrak{p} of R.

These serve as our points.

Example: The ring used for $\mathbb{A}^1_{\mathbb{C}}$ is $\mathbb{C}[x]$. $\mathbb{C}[x]$ has prime ideals of the form (x-c) for $c\in\mathbb{C}$ and the zero ideal (0).

 \mathbb{Z} has prime ideals (p) where p is a prime. $(p) = \{ap \mid a \in \mathbb{Z}\}$

The "Points"

Take a commutative ring R with unity.

Definition

The **spectrum** of R, Spec(R), is the set of prime ideals \mathfrak{p} of R.

These serve as our points.

Example: The ring used for $\mathbb{A}^1_{\mathbb{C}}$ is $\mathbb{C}[x]$.

 $\mathbb{C}[x]$ has prime ideals of the form (x-c) for $c\in\mathbb{C}$ and the zero ideal (0).

 \mathbb{Z} has prime ideals (p) where p is a prime.

$$(p) = \{ap \mid a \in \mathbb{Z}\}$$

If prime ideals are the points, then what are the elements of R?

They are functions on Spec(R):

Definition

For any $\mathfrak{p} \in \operatorname{Spec}(R)$ and $f \in R$, define the "evaluation of f at \mathfrak{p} " to be $f + \mathfrak{p} \in R/\mathfrak{p}$.

$$\mathbb{C}[x]$$
 example: Take $f(x) = x^2 + x + 1 \in \mathbb{C}[x]$ and $(x - 2) \in \mathbb{C}[x]$.
Then $x^2 + x + 1 \equiv x - 7$ in $\mathbb{C}[x]/(x - 2)$.

Notice f(2) = 7

 \mathbb{Z} example: Take (5) in Spec(\mathbb{Z}). Then 11 "evaluated at" (5) is $11 \equiv 1 \mod 5$.

If prime ideals are the points, then what are the elements of R?

They are functions on Spec(R):

Definition

For any $\mathfrak{p} \in \operatorname{Spec}(R)$ and $f \in R$, define the "evaluation of f at \mathfrak{p} " to be $f + \mathfrak{p} \in R/\mathfrak{p}$.

$$\mathbb{C}[x]$$
 example: Take $f(x) = x^2 + x + 1 \in \mathbb{C}[x]$ and $(x - 2) \in \mathbb{C}[x]$. Then $x^2 + x + 1 \equiv x - 7$ in $\mathbb{C}[x]/(x - 2)$.

Notice f(2) = 7

 \mathbb{Z} example: Take (5) in Spec(\mathbb{Z}). Then 11 "evaluated at" (5) is $11 \equiv 1 \mod 5$.

If prime ideals are the points, then what are the elements of R?

They are functions on Spec(R):

Definition

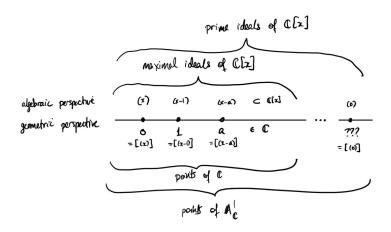
For any $\mathfrak{p} \in \operatorname{Spec}(R)$ and $f \in R$, define the "evaluation of f at \mathfrak{p} " to be $f + \mathfrak{p} \in R/\mathfrak{p}$.

$$\mathbb{C}[x]$$
 example: Take $f(x) = x^2 + x + 1 \in \mathbb{C}[x]$ and $(x - 2) \in \mathbb{C}[x]$.
Then $x^2 + x + 1 \equiv x - 7$ in $\mathbb{C}[x]/(x - 2)$.

Notice f(2) = 7.

 \mathbb{Z} example: Take (5) in Spec(\mathbb{Z}). Then 11 "evaluated at" (5) is $11 \equiv 1 \mod 5$.

A picture of $Spec(\mathbb{C}[x])$



Visualization of $\mathbb{A}^1_{\mathbb{C}}$ [Vakil]. Note the "generic point" (0) off to the side.

The Zariski Topology

 $f \in R$ "evaluating" to 0 at $\mathfrak{p} \in \operatorname{Spec}(R)$ means $f \in \mathfrak{p}$.

Definition

Given any subset $S \subseteq R$, define $V(S) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \supseteq S \}$

 $\mathbb{C}[x]$ example: $V(x^2+x-6)=\{[(x-2)],[(x+3)]\}$. Notice this is just finding the roots of x^2+x-6 .

Definition

The sets V(S) for all $S \subseteq R$ satisfy the axioms for being the closed sets of a topology. We define this as the **Zariski topology** on $\operatorname{Spec}(R)$.

The Zariski Topology

 $f \in R$ "evaluating" to 0 at $\mathfrak{p} \in \operatorname{Spec}(R)$ means $f \in \mathfrak{p}$.

Definition

Given any subset $S \subseteq R$, define $V(S) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \supseteq S \}$

 $\mathbb{C}[x]$ example: $V(x^2+x-6)=\{[(x-2)],[(x+3)]\}$. Notice this is just finding the roots of x^2+x-6 .

Definition

The sets V(S) for all $S \subseteq R$ satisfy the axioms for being the closed sets of a topology. We define this as the **Zariski topology** on $\operatorname{Spec}(R)$.

The Zariski Topology

 $f \in R$ "evaluating" to 0 at $\mathfrak{p} \in \operatorname{Spec}(R)$ means $f \in \mathfrak{p}$.

Definition

Given any subset $S \subseteq R$, define $V(S) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid \mathfrak{p} \supseteq S \}$

 $\mathbb{C}[x]$ example: $V(x^2+x-6)=\{[(x-2)],[(x+3)]\}$. Notice this is just finding the roots of x^2+x-6 .

Definition

The sets V(S) for all $S \subseteq R$ satisfy the axioms for being the closed sets of a topology. We define this as the **Zariski topology** on $\operatorname{Spec}(R)$.

Distinguished open sets

We have a nice basis for the Zariski topology:

Definition

For any $f \in R$, define the **distinguished open set** $D(f) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid f \notin \mathfrak{p} \} = \operatorname{Spec}(R) \setminus V(f)$

 \mathbb{Z} example: D(6) is set of all "primes" p such that $6 \not\equiv 0 \mod p$. This means $D(6) = \{(p) \in \operatorname{Spec}(\mathbb{Z}) \mid p \nmid 6\}$.

Theorem

The distinguished open sets form a basis for the Zariski topology on Spec(R).

We use these to define the structure sheaf on Spec(R).

Distinguished open sets

We have a nice basis for the Zariski topology:

Definition

For any $f \in R$, define the **distinguished open set** $D(f) = \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid f \notin \mathfrak{p} \} = \operatorname{Spec}(R) \setminus V(f)$

 \mathbb{Z} example: D(6) is set of all "primes" p such that $6 \not\equiv 0 \mod p$. This means $D(6) = \{(p) \in \operatorname{Spec}(\mathbb{Z}) \mid p \nmid 6\}$.

$\mathsf{Theorem}$

The distinguished open sets form a basis for the Zariski topology on Spec(R).

We use these to define the structure sheaf on Spec(R).

Presheaves

The last piece of a scheme is its structure sheaf. We want something like functions on open sets of a manifold.

Definition

Given a topological space X a sheaf \mathscr{F} assigns for each open set U of X a set (group, ring, etc) $\mathscr{F}(U)$. This can be seen as the "set of functions on U". We then want:

- ① If $V \subseteq U$ are open sets in X, we can "restrict" a function $f \in \mathcal{F}(U)$ uniquely to some $f' \in \mathcal{F}(V)$.
- ② If $\{f_i\}_{i\in I}$ is a set of functions each defined on U_i that agree on interlaps, we want to be able to "glue together" the $f_i's$ to some $f \in \mathscr{F}(\bigcap_{i\in I} U_i)$.
- We want the above gluing to be unique.

Presheaves

The last piece of a scheme is its structure sheaf.

We want something like functions on open sets of a manifold.

Definition

Given a topological space X a sheaf \mathscr{F} assigns for each open set U of X a set (group, ring, etc) $\mathscr{F}(U)$. This can be seen as the "set of functions on U". We then want:

- If $V \subseteq U$ are open sets in X, we can "restrict" a function $f \in \mathcal{F}(U)$ uniquely to some $f' \in \mathcal{F}(V)$.
- ② If $\{f_i\}_{i\in I}$ is a set of functions each defined on U_i that agree on interlaps, we want to be able to "glue together" the f_i 's to some $f \in \mathscr{F}(\bigcap_{i\in I} U_i)$.
- 3 We want the above gluing to be unique.

The Structure Sheaf

Going back now to Spec(R) with its Zariski topology, the structure sheaf is a sheaf of rings on Spec(R).

Definition

For each distinguished open set $D(f) \subseteq \operatorname{Spec}(R)$, Define: $\mathscr{O}_{\operatorname{Spec}(R)}(D(f))$ to be the localization of R at the set $S = \{g \in R \mid V(g) \subseteq V(f)\}$, which is isomorphic to R_S .

We can think of this as "rational functions" with the denominator not vanishing where f vanishes.

 $\mathbb{C}[x]$ example: If we take $x \in \mathbb{C}[x]$ then $\mathscr{O}_{\mathsf{Spec}(\mathbb{C}[x])}(D(x)) = \mathbb{C}[x]_x$ which is rational functions f/g where $f,g \in \mathbb{C}[x] \ x \nmid g$.

We can then extend this definition to get a sheaf on all open sets of Spec(R).

The Structure Sheaf

Going back now to Spec(R) with its Zariski topology, the structure sheaf is a sheaf of rings on Spec(R).

Definition

For each distinguished open set $D(f) \subseteq \operatorname{Spec}(R)$, Define: $\mathscr{O}_{\operatorname{Spec}(R)}(D(f))$ to be the localization of R at the set $S = \{g \in R \mid V(g) \subseteq V(f)\}$, which is isomorphic to R_S .

We can think of this as "rational functions" with the denominator not vanishing where f vanishes.

 $\mathbb{C}[x]$ example: If we take $x \in \mathbb{C}[x]$ then $\mathscr{O}_{\mathsf{Spec}(\mathbb{C}[x])}(D(x)) = \mathbb{C}[x]_x$, which is rational functions f/g where $f,g \in \mathbb{C}[x] \ x \nmid g$.

We can then extend this definition to get a sheaf on all open sets of Spec(R).

General Schemes

The spectrum of R, the Zariski topology on Spec(R) and the structure sheaf on the topological space give an **Affine Scheme**.

More general schemes are constructed by gluing affine schemes together:

Definition

A **Scheme** is a topological space X with a sheaf of rings where for every point $p \in X$ there is a neighborhood U of p such that $U \cong \operatorname{Spec}(R)$ for some ring R. *

* This isomorphism is *as ringed spaces*, which roughly means the sheaves are isomorphic also.

General Schemes

The spectrum of R, the Zariski topology on Spec(R) and the structure sheaf on the topological space give an **Affine Scheme**.

More general schemes are constructed by gluing affine schemes together:

Definition

A **Scheme** is a topological space X with a sheaf of rings where for every point $p \in X$ there is a neighborhood U of p such that $U \cong \operatorname{Spec}(R)$ for some ring R. *

* This isomorphism is *as ringed spaces*, which roughly means the sheaves are isomorphic also.

Example: Projective Line

We can construct the projective line by gluing together two affine lines.

$$\mathbb{P}^1_k$$

$$U = D(t) = \operatorname{Spec}(k[t, 1/t])$$

$$\mathbb{A}^1_k = \operatorname{Spec}(k[u])$$

$$V = D(u) = \operatorname{Spec}(k[u, 1/u])$$

$$U \to V \ t \mapsto 1/u$$

The gluing of the Affine lines [Vakil].

The Projective Line Continued

$\mathsf{Theorem}$

 \mathbb{P}^1_k is not isomorphic to the spectrum of any ring, that is \mathbb{P}^1_k is not an affine scheme.

This is because if \mathbb{P}^1_k was affine then \mathbb{P}^1_k would be isomorphic to the spectrum of the ring of "global sections" over \mathbb{P}^1_k . But the only polynomials defined over all of \mathbb{P}^1_k are constant, thus $\operatorname{Spec}(\Gamma(\mathbb{P}^1_k,\mathscr{O}_{\mathbb{P}^1_k}))\cong\operatorname{Spec}(k)$, which is only one point: [(0)].