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What is an Elliptic Curve?

Definition

Let k (char k 6= 2, 3) be a field. An elliptic curve E over k is a curve
defined by a polynomial of the form y2 = x3 + ax+ b with coefficients
a, b ∈ k, appended with a ”point at infinity.” Formally, an elliptic
curve E over k is a nonsingular, projective algebraic curve of genus 1
with points lying in P2

k.

Definition

The set of k-rational points of an elliptic curve E is denoted E(k).

Remark

The points on an elliptic curve form a group.
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Elliptic Curves over Finite Fields

Let Fq be the field of q = ps elements. Henceforth let E be an
elliptic curve over Fq.

Theorem 1

E ∼= Z/MZ⊕ Z/LZ for unique L,M ∈ Z where L |M .

Definition

The order of E is the number of elements in the group; this is
N = LM in the above notation. The integer M is the group
exponent, which is the largest order of an element in the group.
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Number of Points on E

Remark

Since Fq is a finite field, the set E(Fq) can be determined by iterating
through all elements of Fq and seeing which ones satisfy the defining
polynomial. (We must also remember to include the point at infinity.)
This allows us to compute the group order. In practice, this might
not be realistic.

Theorem 2 (Hasse)

|q + 1−#E(Fq)| ≤ 2
√
q.

Theorem 3

Let #E(Fq) = q + 1− a. Write x2 − ax+ q = (x− α)(x− β). Then

#E(Fqn) = qn + 1− (αn + βn)

for all n ≥ 1.
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Group Structure

Definition

Let E be an elliptic curve over k. Then E[n] ⊂ E(k) is the kernel of
the map that takes point P to P + P + · · ·+ P (n times).

Theorem 4

Let µn := {x ∈ k | xn = 1}. If E[n] ⊂ E(k), then µn ⊂ k.

Theorem 5

If char k = p > 0 and p | n, write n = prn′ with p - n′. Then

E[n] ∼= Z/n′Z⊕ Z/n′Z or Z/nZ⊕ Z/n′Z.

Theorem 6

Suppose
E(Fq) ∼= Zn ⊕ Zn.

Then either q = n2 + 1 or q = n2 ± n+ 1 or q = (n± 1)2.
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Proof of Theorem 6

Proof.

By applying the Hasse bound, we have n2 = q + 1− a, where
|a| ≤ 2

√
q.

Lemma

a ≡ 2 (mod n).

Proof of Lemma.

Recall char Fq = p.

If p | n, then there are p2 points in E[n].

This contradicts Theorem 5. Hence p - n.

Since E[n] ⊂ E(Fq), by Theorem 4 we know that the nth roots of
unity are in Fq.

So we conclude that q − 1 is a multiple of n.

Therefore, a = q + 1− n2 ≡ 2 (mod n). �
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Proof of Theorem 6 (cont.)

Write a = 2 + kn. Then substituting this into n2 = q + 1− a, we
have

q = n2 + kn+ 1.

By the Hasse bound,

|2 + kn| ≤ 2
√
q.

After squaring, we obtain

4 + 4kn+ k2n2 ≤ 4q = 4(n2 + kn+ 1).

After subtracting, we see that |k| ≤ 2.

The possibilities k = 0,±1,±2 precisely give us the values of q in
our claim.
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How Balanced Can E(Fq) be?

Question

So we have shown that the case of E(Fq) ∼= Z/nZ⊕Z/nZ is very rare.
When E(Fq) is an unbalanced direct sum, what can we say?

Theorem 7

Suppose E(Fq) ∼= Z/nZ⊕ Z/mnZ. Then q = mn2 + kn+ 1 for some
integer k.

Theorem 8

For most values of q, an elliptic curve over Fq has a point of order
greater than 4

√
q.

Remark

This shows that in general, E(Fq) is substantially unbalanced. In
particular, E(Fq) is ”almost cyclic.”
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