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Affine Plane Curves

Definition

Let k be any field. The affine n-space over k is defined as

A"(k) = {(x1,x2,...,xn) | xi € k}
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Affine Plane Curves

Let k be any field. The affine n-space over k is defined as

A"(k) = {(x1,x2,...,xn) | xi € k}

The affine plane over a field k is defined as

A%(k) := {(x1,x2) | x1,x0 € k}

Steven Jin Riemann’s Inequality



Affine Plane Curves

Definition
Let k be any field. The affine n-space over k is defined as

A"(k) = {(x1,x2,...,xn) | xi € k}

The affine plane over a field k is defined as

A2(k) = {(x1, %) | x1,x € k}

An affine plane curve C is a set of form

C:={(x,y) € A*(k) | F(x,y) =0}

where F(x,y) € k[x, y]
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Shortcomings of A"

@ We want a meaningful way to talk about the "intersection” of
any two curves
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Shortcomings of A"

@ We want a meaningful way to talk about the "intersection” of
any two curves

@ We want to "enlarge” the plane such that any two curves will
"intersect” at some "point.”
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Projective Plane Curves

Definition

The projective n-space P” over k is the set of all equivalence
classes of points in A1\ {(0,0,...,0)} such that
(a1, a2, ... an+1) = (Aa1, Aaz, ... Aapy1) forall A € k, A #0
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Projective Plane Curves

Definition

The projective n-space P” over k is the set of all equivalence
classes of points in A1\ {(0,0,...,0)} such that
(a1, a2, ... an+1) = (Aa1, Aaz, ... Aapy1) forall A € k, A #0

Definition

The projective plane P? over k is the set of all equivalence classes
of points in A3\ {(0,0,0)}
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Projective Plane Curves

Definition

The projective n-space P” over k is the set of all equivalence
classes of points in A1\ {(0,0,...,0)} such that
(a1, a2, ... an+1) = (Aa1, Aaz, ... Aapy1) forall A € k, A #0

The projective plane P? over k is the set of all equivalence classes
of points in A3\ {(0,0,0)}

A projective plane curve C is a set

C:={[x:y:z] e P?®|F(x,y,z) =0}

where F(x,y,z) is a form in k[x, y, z]

V.
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Projective Plane Curves (cont.)

Definition

A projective plane curve C is irreducible if it is the zero set of an
irreducible form. The curve is reducible otherwise.
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Projective Plane Curves (cont.)

Definition

A projective plane curve C is irreducible if it is the zero set of an
irreducible form. The curve is reducible otherwise.

v

Suppose C is an affine plane curve determined by the polynomial
F. A point P on C is a simple point if either F,(P) # 0 or
Fy(P) # 0. Otherwise we say P is a singular point.
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Projective Plane Curves (cont.)

Definition

A projective plane curve C is irreducible if it is the zero set of an
irreducible form. The curve is reducible otherwise.

Suppose C is an affine plane curve determined by the polynomial
F. A point P on C is a simple point if either F,(P) # 0 or
Fy(P) # 0. Otherwise we say P is a singular point.

Suppose C is a projective plane curve determined by a form
polynomial F. A point P on C is simple if the affine plane curve
determined by dehomogenized polynomial F, is simple at the
analogous point. Otherwise we say that P is singular. We say C is
nonsingular if all points are simple.
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Algebraic Preliminaries and Review

Henceforth:

@ Our field k will be algebraically closed field of characteristic 0.
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@ C will be an irreducible nonsingular projective plane curve.

Steven Jin Riemann’s Inequality



Algebraic Preliminaries and Review

Henceforth:
@ Our field k will be algebraically closed field of characteristic 0.
@ C will be an irreducible nonsingular projective plane curve.

@ The field of rational functions on C will be notated K.
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Algebraic Preliminaries and Review

Henceforth:
@ Our field k will be algebraically closed field of characteristic 0.
@ C will be an irreducible nonsingular projective plane curve.

@ The field of rational functions on C will be notated K.

Proposition 1

At a point P on C, every nonzero z € K can be expressed uniquely
as z = ut", where u is a unit in the local ring of C at P and t is a
fixed irreducible element in the local ring, called the uniformizing
parameter, with n € Z. We say that n is the order of z at P on
C.
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Divisors

A divisor D on C is a formal sum

D := anP

PeC

with np = 0 for all but a finite number of points P.
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Divisors

A divisor D on C is a formal sum

D := anP

PeC
with np = 0 for all but a finite number of points P.

The degree of a divisor D is the sum of its coefficients, i.e.

deg(D) := Z np

PeC

A divisor D is effective if each np > 0, and we write
Y npP > > mpP if each np > mp.
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Divisors (cont.)

Definition

For any nonzero z € K, define the divisor of z as

div(z) = Z ordp(z)P

PeC
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Divisors (cont.)

For any nonzero z € K, define the divisor of z as

div(z) = Z ordp(z)P

PeC

We define the divisor of zeros of z as

(2)o= Y ordp(2)P

ordp(z)>0

and we define the divisor of poles of z as

(2)0 = Z ordp(z)P

ordp(z)<0
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Properties of Divisors

The set of divisors on C form the free abelian group on the set of
points of C under formal addition.
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Properties of Divisors

The set of divisors on C form the free abelian group on the set of
points of C under formal addition.

Definition

Two divisors D and D’ are linearly equivalent if D' = D + div(z)
for some z € K, in which case we write D' = D.
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Properties of Divisors

The set of divisors on C form the free abelian group on the set of
points of C under formal addition.

Two divisors D and D’ are linearly equivalent if D' = D + div(z)
for some z € K, in which case we write D' = D.

(i) The relation = is an equivalence relation

(i) D =0 if and only if D = div(z) for some z € K
(iii) IfD D', then deg(D) = deg(D’)

(iv) If D= D" and D; = Dj, then D+ Dy = D' + D;
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The Vector Spaces L(D)

Definition

Let D = > npP be a divisor on C. We define
L(D) :={f € K| ordp(f) > —np for all P € C}.

Steven Jin Riemann’s Inequality



The Vector Spaces L(D)

Definition
Let D = > npP be a divisor on C. We define
L(D) :={f € K| ordp(f) > —np for all P € C}.

L(D) forms a vector space over k.
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The Vector Spaces L(D)

Definition
Let D = > npP be a divisor on C. We define
L(D) :={f € K| ordp(f) > —np for all P € C}.

L(D) forms a vector space over k.

Definition
The dimension of L(D) over k is denoted /(D).
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Properties of L(D)

Proposition 3

Let D and D’ be divisors on C.

(i) If D < D/, then L(D) C L(D') and

dimi(L(D')/L(D)) < deg(D’ — D)

(ii) L(0) = k; L(D) =0 if deg(D) <0

(iii) L(D) is finite dimensional for all D. If deg(D) > 0, then
I(D) < deg(D) + 1

(iv) If D = D', then (D) = I(D')
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Motivating Question

How "big" is L(D)? Can we
determine /(D) exactly only using
properties of D and C?




Lemma

In fact, we can! The following Lemma answers part of the question
for divisors of a special form.

Let x € K, x ¢ k. Let Z = (x)o be the divisor of zeros of x and let
n=[K : k(x)]. Then:

(i)Z is an effective divisor of degree n

(ii) There is a constant 7 such that /(rZ) > rn — 7 for all r
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Riemann’s Inequality

@ More generally, we observe that /(D) is "bounded” below,
specifically determined by properties of D and C.
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Riemann’s Inequality

@ More generally, we observe that /(D) is "bounded” below,
specifically determined by properties of D and C.

@ The following theorem was first proved by Berhard Riemann
as Riemann’s Inequality in 1857.
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Riemann’s Inequality

@ More generally, we observe that /(D) is "bounded” below,
specifically determined by properties of D and C.

@ The following theorem was first proved by Berhard Riemann
as Riemann’s Inequality in 1857.

Theorem

There is an integer g such that
/(D) > deg(D) +1—¢g

for all divisors D on C. The smallest such g is called the genus of
C. The genus must be a nonnegative integer.
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Proof Sketch

e Foreach D=5 mpP, let s(D) = deg(D) + 1 — (D). We
want g such that s(D) < g for all D.
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Proof Sketch

e Foreach D=5 mpP, let s(D) = deg(D) + 1 — (D). We
want g such that s(D) < g for all D.

@ Observe s(0) =0, so g > 0 if it exists, by well-ordering
principle.
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Proof Sketch

e Foreach D=5 mpP, let s(D) = deg(D) + 1 — (D). We
want g such that s(D) < g for all D.

@ Observe s(0) =0, so g > 0 if it exists, by well-ordering
principle.
o If D= D', then s(D) = s(D').
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Proof Sketch

e Foreach D=5 mpP, let s(D) = deg(D) + 1 — (D). We
want g such that s(D) < g for all D.

@ Observe s(0) =0, so g > 0 if it exists, by well-ordering
principle.

o If D= D', then s(D) = s(D').

e If D < D', then s(D) < s(D’).
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Proof Sketch

e Foreach D=5 mpP, let s(D) = deg(D) + 1 — (D). We
want g such that s(D) < g for all D.

@ Observe s(0) =0, so g > 0 if it exists, by well-ordering
principle.

o If D= D', then s(D) = s(D').

e If D < D', then s(D) < s(D’).

o Let x € K, x ¢ k. Let Z = (x)o. By Lemma, there exists
smallest 7 such that /(rZ) > rn— 7 for all r.
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Proof Sketch

e Foreach D=5 mpP, let s(D) = deg(D) + 1 — (D). We
want g such that s(D) < g for all D.

@ Observe s(0) =0, so g > 0 if it exists, by well-ordering
principle.

o If D= D', then s(D) = s(D').

e If D < D', then s(D) < s(D’).

o Let x € K, x ¢ k. Let Z = (x)o. By Lemma, there exists
smallest 7 such that /(rZ) > rn— 7 for all r.

o After some algebra and using properties of /(D) and deg(D),
we see that s(rZ) =7+ 1 for all large r > 0. Let g =7+ 1.
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Proof Sketch

e Foreach D=5 mpP, let s(D) = deg(D) + 1 — (D). We
want g such that s(D) < g for all D.

@ Observe s(0) =0, so g > 0 if it exists, by well-ordering
principle.

o If D= D', then s(D) = s(D').

e If D < D', then s(D) < s(D’).

o Let x € K, x ¢ k. Let Z = (x)o. By Lemma, there exists
smallest 7 such that /(rZ) > rn— 7 for all r.

o After some algebra and using properties of /(D) and deg(D),
we see that s(rZ) =7+ 1 for all large r > 0. Let g =7+ 1.

@ Then it suffices to find a divisor D’ such that D = D’ and an
integer r > 0 such that D' < rZ.
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Proof Sketch (cont.)

@ Recall D=> mpP and let Z =) npP.
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Proof Sketch (cont.)

@ Recall D=> mpP and let Z =) npP.

e We want mp — ord(f) < rnp for all P, because this gives
D" = D — div(f) with the desired properties.
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Proof Sketch (cont.)

@ Recall D=> mpP and let Z =) npP.

e We want mp — ord(f) < rnp for all P, because this gives
D" = D — div(f) with the desired properties.
olety=x1 Let T={Pec C|mp>0and ordp(y) > 0}.

Steven Jin Riemann’s Inequality



Proof Sketch (cont.)

@ Recall D=> mpP and let Z =) npP.

e We want mp — ord(f) < rnp for all P, because this gives
D" = D — div(f) with the desired properties.
olety=x1 Let T={Pec C|mp>0and ordp(y) > 0}.

o Let f =[]pcr(y —y(P))™.
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Proof Sketch (cont.)

Recall D =Y mpP and let Z =) npP.

We want mp — ord(f) < rnp for all P, because this gives
D" = D — div(f) with the desired properties.

Let y=x"1 Let T={P & C|mp>0and ordp(y) > 0}.
Let £ = [Iper(y —y(P))™.

Observe that mp — ordp(f) < 0 when ordp(y) > 0, so this
satisfies what we want.

(]
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Proof Sketch (cont.)

@ Recall D=> mpP and let Z=>_ npP.

e We want mp — ord(f) < rnp for all P, because this gives
D" = D — div(f) with the desired properties.

olety=x1 Let T={Pec C|mp>0and ordp(y) > 0}.

o Let f =[]per(y —y(P))™.

@ Observe that mp — ordp(f) < 0 when ordp(y) > 0, so this
satisfies what we want.

e If ordp(y) < 0, then np > 0, so we can just choose a large r
to satisfy the inequalities we want.
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Proof Sketch (cont.)

@ Recall D=> mpP and let Z=>_ npP.

e We want mp — ord(f) < rnp for all P, because this gives
D" = D — div(f) with the desired properties.

olety=x1 Let T={Pec C|mp>0and ordp(y) > 0}.

o Let f =[]per(y —y(P))™.

@ Observe that mp — ordp(f) < 0 when ordp(y) > 0, so this
satisfies what we want.

e If ordp(y) < 0, then np > 0, so we can just choose a large r
to satisfy the inequalities we want.

@ This proves the theorem.
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Corollaries

If /(Do) = deg(Do) +1— g and D = D' > Dy, then
I(D) = deg(D) +1—g.
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Corollaries
Corollary 1

If /(Do) = deg(Do) +1— g and D = D' > Dy, then
I(D) = deg(D) +1—g.

Corollary 2

If x € K, x ¢ k, then g = deg(r(x)o) — /(r(x)o) + 1 for all
sufficiently large r.
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Corollaries

Corollary 1

If /(Do) = deg(Do) +1— g and D = D' > Dy, then
I(D) = deg(D) +1—g.

Corollary 2
If x € K, x ¢ k, then g = deg(r(x)o) — /(r(x)o) + 1 for all
sufficiently large r.

Corollary 3

There is an integer N such that for all divisors D of degree greater
than N, we have /(D) = deg(D) + 1 — g.

A\
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Final Question

Now that we have "bounded” /(D)
from below, can we do the same from
above? In other words, is there a way
to determine /(D) exactly, not just in

terms of inequality?




The Riemann-Roch Theorem

@ Yes we can!

Steven Jin Riemann’s Inequality



The Riemann-Roch Theorem

@ Yes we can!

@ The "other side” of the inequality was resolved by Riemann’s
student Gustav Roch in 1865.
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student Gustav Roch in 1865.

@ The final result is the famous Riemann-Roch Theorem.
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The Riemann-Roch Theorem

@ Yes we can!

@ The "other side” of the inequality was resolved by Riemann’s
student Gustav Roch in 1865.

@ The final result is the famous Riemann-Roch Theorem.

There is a special type of divisor W on C of degree 2g — 2 called a
Canonical Divisor.
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The Riemann-Roch Theorem

@ Yes we can!

@ The "other side” of the inequality was resolved by Riemann’s
student Gustav Roch in 1865.

@ The final result is the famous Riemann-Roch Theorem.

There is a special type of divisor W on C of degree 2g — 2 called a
Canonical Divisor.

v
Theorem

Let W be a canonical divisor on C. Let the genus of C be g.
Then for any divisor D,

/(D) = deg(D) +1— g + I(W — D)
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