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Affine Plane Curves

Definition

Let k be any field. The affine n-space over k is defined as

An(k) := {(x1, x2, . . . , xn) | xi ∈ k}

Definition

The affine plane over a field k is defined as

A2(k) := {(x1, x2) | x1, x2 ∈ k}

Definition

An affine plane curve C is a set of form

C := {(x , y) ∈ A2(k) | F (x , y) = 0}

where F (x , y) ∈ k[x , y ]
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Shortcomings of An

We want a meaningful way to talk about the ”intersection” of
any two curves

We want to ”enlarge” the plane such that any two curves will
”intersect” at some ”point.”
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Projective Plane Curves

Definition

The projective n-space Pn over k is the set of all equivalence
classes of points in An+1 \ {(0, 0, . . . , 0)} such that
(a1, a2, . . . an+1) ≡ (λa1, λa2, . . . λan+1) for all λ ∈ k , λ 6= 0

Definition

The projective plane P2 over k is the set of all equivalence classes
of points in A3 \ {(0, 0, 0)}

Definition

A projective plane curve C is a set

C := {[x : y : z ] ∈ P2 | F (x , y , z) = 0}

where F (x , y , z) is a form in k[x , y , z ]
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Projective Plane Curves (cont.)

Definition

A projective plane curve C is irreducible if it is the zero set of an
irreducible form. The curve is reducible otherwise.

Definition

Suppose C is an affine plane curve determined by the polynomial
F . A point P on C is a simple point if either Fx(P) 6= 0 or
Fy (P) 6= 0. Otherwise we say P is a singular point.

Definition

Suppose C is a projective plane curve determined by a form
polynomial F . A point P on C is simple if the affine plane curve
determined by dehomogenized polynomial F∗ is simple at the
analogous point. Otherwise we say that P is singular. We say C is
nonsingular if all points are simple.
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Algebraic Preliminaries and Review

Henceforth:

Our field k will be algebraically closed field of characteristic 0.

C will be an irreducible nonsingular projective plane curve.

The field of rational functions on C will be notated K .

Proposition 1

At a point P on C , every nonzero z ∈ K can be expressed uniquely
as z = utn, where u is a unit in the local ring of C at P and t is a
fixed irreducible element in the local ring, called the uniformizing
parameter, with n ∈ Z. We say that n is the order of z at P on
C .
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Divisors

Definition

A divisor D on C is a formal sum

D :=
∑
P∈C

nPP

with nP = 0 for all but a finite number of points P.

Definition

The degree of a divisor D is the sum of its coefficients, i.e.

deg(D) :=
∑
P∈C

nP

A divisor D is effective if each nP ≥ 0, and we write∑
nPP ≥

∑
mPP if each nP ≥ mP .
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Divisors (cont.)

Definition

For any nonzero z ∈ K , define the divisor of z as

div(z) =
∑
P∈C

ordP(z)P

.

Definition

We define the divisor of zeros of z as

(z)0 =
∑

ordP(z)>0

ordP(z)P

and we define the divisor of poles of z as

(z)∞ =
∑

ordP(z)<0

ordP(z)P
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Properties of Divisors

Remark

The set of divisors on C form the free abelian group on the set of
points of C under formal addition.

Definition

Two divisors D and D ′ are linearly equivalent if D ′ = D + div(z)
for some z ∈ K , in which case we write D ′ ≡ D.

Proposition 2

(i) The relation ≡ is an equivalence relation
(ii) D ≡ 0 if and only if D = div(z) for some z ∈ K
(iii) If D ≡ D ′, then deg(D) = deg(D ′)
(iv) If D ≡ D ′ and D1 ≡ D ′1, then D + D1 ≡ D ′ + D ′1
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The Vector Spaces L(D)

Definition

Let D =
∑

nPP be a divisor on C . We define
L(D) := {f ∈ K | ordP(f ) ≥ −nP for all P ∈ C}.

Remark

L(D) forms a vector space over k .

Definition

The dimension of L(D) over k is denoted l(D).
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Properties of L(D)

Proposition 3

Let D and D ′ be divisors on C .
(i) If D ≤ D ′, then L(D) ⊂ L(D ′) and
dimk(L(D ′)/L(D)) ≤ deg(D ′ − D)
(ii) L(0) = k; L(D) = 0 if deg(D) < 0
(iii) L(D) is finite dimensional for all D. If deg(D) ≥ 0, then
l(D) ≤ deg(D) + 1
(iv) If D ≡ D ′, then l(D) = l(D ′)
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Motivating Question

How ”big” is L(D)? Can we
determine l(D) exactly only using

properties of D and C?
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Lemma

In fact, we can! The following Lemma answers part of the question
for divisors of a special form.

Lemma

Let x ∈ K , x /∈ k . Let Z = (x)0 be the divisor of zeros of x and let
n = [K : k(x)]. Then:
(i)Z is an effective divisor of degree n
(ii) There is a constant τ such that l(rZ ) ≥ rn − τ for all r
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Riemann’s Inequality

More generally, we observe that l(D) is ”bounded” below,
specifically determined by properties of D and C .

The following theorem was first proved by Berhard Riemann
as Riemann’s Inequality in 1857.

Theorem

There is an integer g such that

l(D) ≥ deg(D) + 1− g

for all divisors D on C . The smallest such g is called the genus of
C . The genus must be a nonnegative integer.
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Proof Sketch

For each D =
∑

mPP, let s(D) = deg(D) + 1− l(D). We
want g such that s(D) ≤ g for all D.

Observe s(0) = 0, so g ≥ 0 if it exists, by well-ordering
principle.

If D ≡ D ′, then s(D) = s(D ′).

If D ≤ D ′, then s(D) ≤ s(D ′).

Let x ∈ K , x /∈ k . Let Z = (x)0. By Lemma, there exists
smallest τ such that l(rZ ) ≥ rn − τ for all r .

After some algebra and using properties of l(D) and deg(D),
we see that s(rZ ) = τ + 1 for all large r > 0. Let g = τ + 1.

Then it suffices to find a divisor D ′ such that D ≡ D ′ and an
integer r ≥ 0 such that D ′ ≤ rZ .
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Proof Sketch (cont.)

Recall D =
∑

mPP and let Z =
∑

nPP.

We want mP − ord(f ) ≤ rnP for all P, because this gives
D ′ = D − div(f ) with the desired properties.

Let y = x−1. Let T = {P ∈ C | mP > 0 and ordP(y) ≥ 0}.
Let f =

∏
P∈T (y − y(P))mP .

Observe that mP − ordP(f ) ≤ 0 when ordP(y) ≥ 0, so this
satisfies what we want.

If ordP(y) < 0, then nP > 0, so we can just choose a large r
to satisfy the inequalities we want.

This proves the theorem.
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Corollaries

Corollary 1

If l(D0) = deg(D0) + 1− g and D ≡ D ′ ≥ D0, then
l(D) = deg(D) + 1− g .

Corollary 2

If x ∈ K , x /∈ k, then g = deg(r(x)0)− l(r(x)0) + 1 for all
sufficiently large r .

Corollary 3

There is an integer N such that for all divisors D of degree greater
than N, we have l(D) = deg(D) + 1− g .
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Final Question

Now that we have ”bounded” l(D)
from below, can we do the same from
above? In other words, is there a way
to determine l(D) exactly, not just in

terms of inequality?
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The Riemann-Roch Theorem

Yes we can!

The ”other side” of the inequality was resolved by Riemann’s
student Gustav Roch in 1865.

The final result is the famous Riemann-Roch Theorem.

Remark

There is a special type of divisor W on C of degree 2g − 2 called a
Canonical Divisor.

Theorem

Let W be a canonical divisor on C . Let the genus of C be g .
Then for any divisor D,

l(D) = deg(D) + 1− g + l(W − D)
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