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FIELD

Property Addition Multiplication

Closure x + y	! F, for	all	x, y	! F x , y	! F, for	all	x, y	! F

Commutativity x + y = y + x, for	all	x, y ! F x · y = y , x, for	all	x, y ! F

Associativity x + y + z = x + y + z , for	all	x, y, z ! F x · y , z = x · y , z , for	all	x, y, z ! F

Identity There	exists	an	element	0 ! F	such	that	0 + x = x +
0 = x, for	all	x ! F	
(Additive	Identity)

There	exists	an	element	1 ! F	such	that	1 ,
x = x , 1 = x, for	all	x ! F		
(Multiplicative	Identity)

Inverse For	all	x	! F, there	exists	y ! F	such	that	x + y = 0	
(Additive	Inverse)

For	all	x ! F×, there	exists	y	!	F	such	that	x ,
y = 1	
(Multiplicative	Inverse)

Distributivity (Multiplication is distributive over 
addition)

For	all	x, y, z ∈ F, x , y + z = x · y + x , z

Definition:A field is a non-empty set F with two binary operations on F, namely, “+“ (addition) and “·” (multiplication), 
satisfying the following field axioms: 



EXAMPLES

• Set of Real Numbers, ℝ
• Set of Complex Numbers, ℂ
• Set of Rational Numbers, ℚ
• 𝔽J = 0,1 = ℤ/2ℤ
• In general,  𝔽N = 0,1, … , p − 1 = ℤ

Nℤ
, where p is prime

• ℂ X , the field of rational functions with complex coefficients
• ℝ X , the field of rational functions with real coefficients
• ℚ X , the field of rational functions with rational coefficients
• In general, K X , where K is a field



EXTENSION FIELDS

Definition: A field E containing a field F is called an extension field of F (or simply an extension of F,
denoted by E/F). Such an E is regarded as an F–vector space. The dimension of as an F–vector space is
called the degree of E	over F and is denoted by [E: F]. We say E is finite over F (or a finite extension of F)
if it has a finite degree over F and infinite otherwise.

Examples: (a) The field of complex numbers, ℂ, is a finite extension of ℝ and has degree 2 over ℝ
(basis {1, i})
(b) The field of real numbers, ℝ, has an infinite degree over the field of rationals, ℚ: the field ℚ is
countable, and so every finite-dimensional ℚ–vector space is also countable, but a famous argument
of Cantor shows that ℝ is not countable.
(c) The field of Gaussian rationals,	ℚ i = {a + bi: a, b ! ℚ}, has degree 2 over ℚ (basis {1, i})
(d) The field F(X) has infinite degree over F; in fact, even its subspace F[X] has infinite dimension
over F



ALGEBRAIC AND TRANSCENDENTAL ELEMENTS

Definition: An element α in E is algebraic over F,	 if f α = 0, for some non-zero
polynomial f ∈ F X .An element that is not algebraic over F is transcendental over F.

Examples: (a) The numberα = 2� is algebraic over ℝ since p 2� = 0, for p X = XJ −
2	 ∈ ℝ[X]
(b) The number α = 3_ is algebraic over ℚ since h 3_ = 0, for h X = X` − 3 ∈ ℚ[X]
(c) The number π = 3.141… is transcendental over ℚ
(d) The number	α = π is algebraic over ℚ(π) since q π = 0 for q X = X − π ∈ ℚ(π)[X]



ALGEBRAIC AND TRANSCENDENTAL EXTENSIONS 

Definition: A field extension E/F is said to be an algebraic extension, and E is said to be algebraic over F,	if
all elements of E are algebraic over F. Otherwise, E is transcendental over F. Thus, E/F is transcendental if
at least one element of E is transcendental over F.
Remark:A field extension E/F is finite if and only if E is algebraic and finitely generated (as a field) over F.

Examples: (a) The field of real numbers is a transcendental extension of the field ℚ since π is
transcendental over ℚ
(b) The field ℚ(e) is a transcendental extension of ℚ since e is transcendental over ℚ
(c) The field of rational functions F(X) in the variable X is a transcendental extension of the field F since X
is transcendental over F.
(d) The field ℚ( 2� ) is an algebraic extension of ℚ since it has degree 2 (finite) over ℚ
(e) The field ℚ( 3_ ) is an algebraic extension of ℚ since it has degree 3 (finite) over ℚ



TRANSCENDENCE BASE

Definition: A subset S = ae, … , af of E is called algebraically independent over F if there is no
non-zero polynomial f xe, … , xf ∈ F[Xe, … , Xf] such that f ae, … , af = 0. A transcendence base
for E/F is a maximal subset (with respect to inclusion) of E which is algebraically independent over
F.

Note that if E/F is an algebraic extension, the empty set is the only algebraically independent
subset of E. In particular, elements of an algebraically independent set are necessarily
transcendental.



THEOREM

Theorem: The extension E/F has a transcendence base and any two
transcendence bases of E/F have the same cardinality

Remark: The cardinality of a transcendence base for E/F is called the transcendence
degree of E/F. Algebraic extensions are precisely the extensions of transcendence
degree 0. Note that if Se and SJ are transcendence bases for E/F, it is not
necessarily the case that F Se = F SJ .



NOETHER’S NORMALIZATION THEOREM

Theorem: Suppose that R is a finitely generated domain over a field K. Then, there exists an
algebraically independent subset ℒ= {ye, … , yi} of R so that R is integral over R ℒ

Sketch OfThe Proof:
Definition: In commutative algebra, an element b of a commutative ring 𝐵 is said to be integral over
𝐴, a subring of B, if b is a root of a monic polynomial over A. If every element of B is integral over
A, then 𝐵 is said to be integral over 𝐴.
(i) The proof is done by induction on n, the number of generators of R over K.	 Thus, R =
K[xe, … , xf]
(ii) If n = 0, then R = K (Nothing to Prove). If n = 1, then R = K xe . Then, there are two cases:
(a) If xe	is algebraic, then r = 0 and xe is integral over K. So, the theorem holds.
(b) If xe is transcendental, then set xe = ye.Then, we get R = K xe , which is integral over K[xe].
(iii) Now, let n ≥ 2. If xe, … , xf are algebraically independent, then set xn = yn, ∀i and we’re done. If
not, then there exists a non-zero polynomial f(X) ∈ K[Xe, … , Xf] such that f xe, … , xf = 0.



NOETHER’S NORMALIZATION THEOREM (CONTN.)

The polynomial can be written as f X = ∑ cqXq�
q , where we use the notation Xq = Xe

rs …Xf
rt for α =

ae, … , af .	
(iv) Rewriting the above polynomial as a polynomial in Xe with coefficients in K XJ, … , Xf , we have:

f X = ∑ fu(Xe, … , Xf)Xe
uv

uwx
Since f is non-zero, it involves at least one of the Xn and we can assume it is Xe. Now, we want to somehow 
arrange to have fv = 1. Then, xe would be integral over K xJ, … , xf , which by induction on n would be integral 
over K ℒ , for some algebraically independent subset ℒ. Since the integral extensions of integral extensions are 
integral, the theorem follows.
(v) To make f monic, we perform a change of variables that transforms or “normalizes” f into a monic polynomial in 
Xe. Let YJ, …Yf and yJ, … , yf ∈ R be given by Yn = Xn − Xe

z{ , where the positive integers mn = dn|e, where d is an 
integer greater than any of the exponents which occur in the polynomial f(X). This gives us a new polynomial 
g Xe, YJ, …Yf = f Xe, … , Xf ∈ K Xe, YJ, … , Yf such that g xe, yJ, … , yf = 0. Then, 

g Xe, YJ, … , Yf =~cq

�

q

Xe
rs Xe� + XJ

r� Xe�
� + X`

r_ … Xe�
t�s + Xf

rt



NOETHER’S NORMALIZATION THEOREM (CONTN.)

It is easy to see that K Xe, YJ, … , Yf = K Xe, XJ, … , Xf . Now, the highest power of Xe which
occurs is N = ∑andn|e�

� . The coefficient of Xev is cq.	We can divide g by this non-zero constant
and make g monic in Xe and we’re done by induction.

Relevance: Noether’s Normalization Theorem provides a refinement of the choice of 
transcendental extensions so that certain ring extensions are integral extensions, not just 
algebraic extensions.
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