EXPLORING TRANSCENDENTAL EXTENSIONS

ADHEEP JOSEPH MENTOR: JORDAN HIRSH DIRECTED READING PROGRAM, SUMMER 2018 UNIVERSITY OF MARYLAND, COLLEGE PARK

AGENDA

- FIELD AND FIELD EXTENSIONS
- FIELD AXIOMS
- ALGEBRAIC EXTENSIONS
- TRANSCENDENTAL EXTENSIONS
- TRANSCENDENTAL EXTENSIONS
- TRANSCENDENCE BASE
- TRANSCENDENCE DEGREE
- NOETHER'S NORMALIZATION THEOREM
- SKETCH OF PROOF
- o **RELEVANCE**

FIELD

Definition: A field is a non-empty set F with two binary operations on F, namely, "+" (addition) and " \cdot " (multiplication), satisfying the following field axioms:

Property	Addition	Multiplication
Closure	$x + y \in F$, for all $x, y \in F$	$x \cdot y \in F$, for all x, y $\in F$
Commutativity	$x + y = y + x$, for all x, y \in F	$\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$, for all $\mathbf{x}, \mathbf{y} \in \mathbf{F}$
Associativity	$(x + y) + z = x + (y + z)$, for all x, y, z \in F	$(x \cdot y) \cdot z = x \cdot (y \cdot z)$, for all x, y, z \in F
ldentity	There exists an element $0 \in F$ such that $0 + x = x + 0 = x$, for all $x \in F$ (Additive Identity)	There exists an element $1 \in F$ such that $1 \cdot x = x \cdot 1 = x$, for all $x \in F$ (Multiplicative Identity)
Inverse	For all $x \in F$, there exists $y \in F$ such that $x + y = 0$ (Additive Inverse)	For all $x \in F^{\times}$, there exists $y \in F$ such that $x \cdot y = 1$ (Multiplicative Inverse)
Distributivity (Multiplication is distributive over addition)	For all x, y, z \in F, x \cdot (y + z) = x \cdot y + x \cdot z	

EXAMPLES

- Set of Real Numbers, $\mathbb R$
- Set of Complex Numbers, $\ensuremath{\mathbb{C}}$
- Set of Rational Numbers, ${\mathbb Q}$
- $\mathbb{F}_2 = \{0,1\} = \mathbb{Z}/2\mathbb{Z}$
- In general, $\mathbb{F}_p = \{0, 1, ..., p-1\} = \frac{\mathbb{Z}}{p\mathbb{Z}}$, where p is prime
- $\mathbb{C}(X)$, the field of rational functions with complex coefficients
- $\mathbb{R}(X)$, the field of rational functions with real coefficients
- $\mathbb{Q}(X)$, the field of rational functions with rational coefficients
- In general, K(X), where K is a field

EXTENSION FIELDS

Definition: A field E containing a field F is called an *extension field* of F (or simply an extension of F, denoted by E/F). Such an E is regarded as an F-vector space. The dimension of as an F-vector space is called the degree of E over F and is denoted by [E: F]. We say E is *finite* over F (or a finite extension of F) if it has a finite degree over F and *infinite* otherwise.

Examples: (a) The field of complex numbers, \mathbb{C} , is a finite extension of \mathbb{R} and has degree 2 over \mathbb{R} (basis $\{1, i\}$)

(b) The field of real numbers, \mathbb{R} , has an infinite degree over the field of rationals, \mathbb{Q} : the field \mathbb{Q} is countable, and so every finite-dimensional \mathbb{Q} -vector space is also countable, but a famous argument of Cantor shows that \mathbb{R} is not countable.

(c) The field of Gaussian rationals, $\mathbb{Q}(i) = \{a + bi: a, b \in \mathbb{Q}\}$, has degree 2 over \mathbb{Q} (basis $\{1, i\}$) (d) The field F(X) has infinite degree over F; in fact, even its subspace F[X] has infinite dimension over F

ALGEBRAIC AND TRANSCENDENTAL ELEMENTS

<u>Definition</u>: An element α in E is algebraic over F, if $f(\alpha) = 0$, for some non-zero polynomial $f \in F[X]$. An element that is not algebraic over F is transcendental over F.

Examples: (a) The number $\alpha = \sqrt{2}$ is algebraic over \mathbb{R} since $p(\sqrt{2}) = 0$, for $p(X) = X^2 - 2 \in \mathbb{R}[X]$ (b) The number $\alpha = \sqrt[3]{3}$ is algebraic over \mathbb{Q} since $h(\sqrt[3]{3}) = 0$, for $h(X) = X^3 - 3 \in \mathbb{Q}[X]$ (c) The number $\pi = 3.141$... is transcendental over \mathbb{Q} (d) The number $\alpha = \pi$ is algebraic over $\mathbb{Q}(\pi)$ since $q(\pi) = 0$ for $q(X) = X - \pi \in \mathbb{Q}(\pi)[X]$

ALGEBRAIC AND TRANSCENDENTAL EXTENSIONS

Definition: A field extension E/F is said to be an *algebraic extension*, and E is said to be algebraic over F, if all elements of E are algebraic over F. Otherwise, E is transcendental over F. Thus, E/F is *transcendental* if at least one element of E is transcendental over F.

Remark: A field extension E/F is finite if and only if E is algebraic and finitely generated (as a field) over F.

Examples: (a) The field of real numbers is a transcendental extension of the field \mathbb{Q} since π is transcendental over \mathbb{Q}

(b) The field $\mathbb{Q}(e)$ is a transcendental extension of \mathbb{Q} since e is transcendental over \mathbb{Q}

(c) The field of rational functions F(X) in the variable X is a transcendental extension of the field F since X is transcendental over F.

(d) The field $\mathbb{Q}(\sqrt{2})$ is an algebraic extension of \mathbb{Q} since it has degree 2 (finite) over \mathbb{Q} (e) The field $\mathbb{Q}(\sqrt[3]{3})$ is an algebraic extension of \mathbb{Q} since it has degree 3 (finite) over \mathbb{Q}

TRANSCENDENCE BASE

Definition: A subset $S = \{a_1, ..., a_n\}$ of E is called *algebraically independent* over F if there is no non-zero polynomial $f(x_1, ..., x_n) \in F[X_1, ..., X_n]$ such that $f(a_1, ..., a_n) = 0$. A *transcendence base* for E/F is a maximal subset (with respect to inclusion) of E which is algebraically independent over F.

Note that if E/F is an algebraic extension, the empty set is the only algebraically independent subset of E. In particular, elements of an algebraically independent set are necessarily transcendental.

THEOREM

Theorem: The extension E/F has a transcendence base and any two transcendence bases of E/F have the same cardinality

<u>Remark:</u> The cardinality of a transcendence base for E/F is called the transcendence degree of E/F. Algebraic extensions are precisely the extensions of transcendence degree 0. Note that if S_1 and S_2 are transcendence bases for E/F, it is not necessarily the case that $F(S_1) = F(S_2)$.

NOETHER'S NORMALIZATION THEOREM

<u>Theorem</u>: Suppose that R is a finitely generated domain over a field K. Then, there exists an algebraically independent subset $\mathcal{L} = \{y_1, \dots, y_r\}$ of R so that R is integral over $R[\mathcal{L}]$

Sketch Of The Proof:

Definition: In commutative algebra, an element b of a commutative ring B is said to be integral over A, a subring of B, if b is a root of a monic polynomial over A. If every element of B is integral over A, then B is said to be integral over A.

(i) The proof is done by induction on n, the number of generators of R over K. Thus, $R = K[x_1, ..., x_n]$

(ii) If n = 0, then R = K (Nothing to Prove). If n = 1, then $R = K[x_1]$. Then, there are two cases:

(a) If x_1 is algebraic, then r = 0 and x_1 is integral over K. So, the theorem holds.

(b) If x_1 is transcendental, then set $x_1 = y_1$. Then, we get $R = K[x_1]$, which is integral over $K[x_1]$. (iii) Now, let $n \ge 2$. If $x_1, ..., x_n$ are algebraically independent, then set $x_i = y_i$, $\forall i$ and we're done. If not, then there exists a non-zero polynomial $f(X) \in K[X_1, ..., X_n]$ such that $f(x_1, ..., x_n) = 0$.

NOETHER'S NORMALIZATION THEOREM (CONTN.)

The polynomial can be written as $f(X) = \sum_{\alpha} c_{\alpha} X^{\alpha}$, where we use the notation $X^{\alpha} = X_1^{a_1} \dots X_n^{a_n}$ for $\alpha = (a_1, \dots, a_n)$.

(iv) Rewriting the above polynomial as a polynomial in X_1 with coefficients in $K[X_2, ..., X_n]$, we have:

$$f(X) = \sum_{j=0}^{N} f_j(X_1, ..., X_n) X_1^j$$

Since f is non-zero, it involves at least one of the X_i and we can assume it is X_1 . Now, we want to somehow arrange to have $f_N = 1$. Then, x_1 would be integral over $K[x_2, ..., x_n]$, which by induction on n would be integral over $K[\mathcal{L}]$, for some algebraically independent subset \mathcal{L} . Since the integral extensions of integral extensions are integral, the theorem follows.

(v) To make f monic, we perform a change of variables that transforms or "normalizes" f into a monic polynomial in X_1 . Let $Y_2, ..., Y_n$ and $y_2, ..., y_n \in R$ be given by $Y_i = X_i - X_1^{m_i}$, where the positive integers $m_i = d^{i-1}$, where d is an integer greater than any of the exponents which occur in the polynomial f(X). This gives us a new polynomial $g(X_1, Y_2, ..., Y_n) = f(X_1, ..., X_n) \in K[X_1, Y_2, ..., Y_n]$ such that $g(x_1, y_2, ..., y_n) = 0$. Then,

$$g(X_1, Y_2, ..., Y_n) = \sum_{\alpha} c_{\alpha} X_1^{a_1} (X_1^d + X_2)^{a_2} (X_1^{d^2} + X_3)^{a_3} ... (X_1^{d^{n-1}} + X_n)^{a_n}$$

NOETHER'S NORMALIZATION THEOREM (CONTN.)

It is easy to see that $K[X_1, Y_2, ..., Y_n] = K[X_1, X_2, ..., X_n]$. Now, the highest power of X_1 which occurs is $N = \sum a_i d^{i-1}$. The coefficient of X_1^N is c_{α} . We can divide g by this non-zero constant and make g monic in X_1 and we're done by induction.

<u>Relevance</u>: Noether's Normalization Theorem provides a refinement of the choice of transcendental extensions so that certain ring extensions are integral extensions, not just algebraic extensions.

REFERENCES

- Algebra, Serge Lange (Revised Third Edition)
- Abstract Algebra, David S. Dummit & Richard M. Foote
- Abstract Algebra Theory And Applications, Thomas W. Judson
- Fields And Galois Theory, J. S. Milne
- Galois Theory, Ian Stewart