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FIELD

Definition: A field is a non-empty set F with two binary operations on F, namely,“+

satisfying the following field axioms:

Multiplication

Closure x+yeFforallx,yeF

Commutativity x+y=y+xforallx,y €F

Associativity x+y)+z=x+(y+2z),forallx,y,z€eF

|dentity There exists an element 0 € F such that 0 + x = x +
0=xforallxeF
(Additive Identity)

Inverse For all x € F, there existsy € F such thatx+y =0

(Additive Inverse)

Distributivity (Multiplication is distributive over Forallx,y,z€F, x-(y+2z)=x-y+x-z
addition)

“ (addition) and “-” (multiplication),

x-y€F forallx,yeF
x-y=y-xforallx,y €F
xy)z=x-(y-z)forallx,y,z€F

There exists an element 1 € F such that1 -
x=Xx+-1=xforallxeF
(Multiplicative Identity)

For all x € F*, there exists y € F such that x -
y=1
(Multiplicative Inverse)



EXAMPLES

e Set of Real Numbers, R

* Set of Complex Numbers, C

e Set of Rational Numbers, Q

« F, ={0,1} =Z/2Z

* In general, F, = {01,..,p—1} = p%, where p is prime

« C(X), the field of rational functions with complex coefficients
* R(X), the field of rational functions with real coefficients

* Q(X), the field of rational functions with rational coefficients
* In general, K(X), where K is a field



EXTENSION FIELDS

Definition: A field E containing a field F is called an extension field of F (or simply an extension of F,
denoted by E/F). Such an E is regarded as an F—vector space. The dimension of as an F—vector space is
called the degree of E over F and is denoted by [E: F]. We say E is finite over F (or a finite extension of F)
if it has a finite degree over F and infinite otherwise.

Examples: (a) The field of complex numbers, C, is a finite extension of R and has degree 2 over R
(basis {1,1})

(b) The field of real numbers, R, has an infinite degree over the field of rationals, Q: the field Q is
countable, and so every finite-dimensional Q—vector space is also countable, but a famous argument
of Cantor shows that R is not countable.

(c) The field of Gaussian rationals, Q(i) = {a + bi: a,b € Q}, has degree 2 over Q (basis {1, i})

(d) The field F(X) has infinite degree over F; in fact, even its subspace F[X] has infinite dimension
over F




ALGEBRAIC AND TRANSCENDENTAL ELEMENTS

Definition: An element o in E is algebraic over F,if f(a) =0, for some non-zero
polynomial f € F[X]. An element that is not algebraic over F is transcendental over F.

Examples: (2) The numbera = V2 is algebraic over R since p(v2) = 0, for p(X) = X? —
2 € R[X]

(b) The number a = /3 is algebraic over Q since h(i/?) =0, for h(X) = X®> — 3 € Q[X]
(c) The number m = 3.141 ... is transcendental over Q

(d) The number a = Tt is algebraic over Q() since q(m) = 0 for q(X) = X —m € Q(m)[X]




ALGEBRAIC AND TRANSCENDENTAL EXTENSIONS

Definition: A field extension E/F is said to be an algebraic extension, and E is said to be algebraic over F, if
all elements of E are algebraic over F. Otherwise, E is transcendental over F. Thus, E/F is transcendental if
at least one element of E is transcendental over F.

Remark: A field extension E/F is finite if and only if E is algebraic and finitely generated (as a field) over F.

Examples: (a) The field of real numbers is a transcendental extension of the field Q since T is
transcendental over Q

(b) The field Q(e) is a transcendental extension of Q since e is transcendental over Q

(c) The field of rational functions F(X) in the variable X is a transcendental extension of the field F since X
is transcendental over F.

(d) The field Q(+/2) is an algebraic extension of Q since it has degree 2 (finite) over Q
(e) The field Q(3/3) is an algebraic extension of Q since it has degree 3 (finite) over Q




TRANSCENDENCE BASE

Definition: A subset S ={a;,...,a,} of E is called algebraically independent over F if there is no
non-zero polynomial f(xy, ...,x,) € F[Xy, ..., X,] such that f(a,,...,a,) = 0. A transcendence base
for E/F is a maximal subset (with respect to inclusion) of E which is algebraically independent over
F.

Note that if E/F is an algebraic extension, the empty set is the only algebraically independent
subset of E. In particular, elements of an algebraically independent set are necessarily
transcendental.



THEOREM

Theorem: The extension E/F has a transcendence base and any two
transcendence bases of E/F have the same cardinality

Remark: The cardindlity of a transcendence base for E/F is called the transcendence
degree of E/F. Algebraic extensions are precisely the extensions of transcendence
degree 0. Note that if S; and S, are transcendence bases for E/F, it is not
necessarily the case that F(S;) = F(S,).




NOETHER'S NORMALIZATION THEOREM

Theorem: Suppose that R is a finitely generated domain over a field K. Then, there exists an
algebraically independent subset L= {y;, ..., y;} of R so that R is integral over R[L]

Sketch Of The Proof:

Definition: In commutative algebra, an element b of a commutative ring B is said to be integral over
A, a subring of B, if b is a root of a monic polynomial over A. If every element of B is integral over
A, then B is said to be integral over A.

(i) The proof is done by induction on n, the number of generators of R over K. Thus, R =
K[X1, - ) X ]

(i) If n = 0, then R = K (Nothing to Prove). If n = 1, then R = K[x4]. Then, there are two cases:
(@) If x4 is algebraic, then r = 0 and x; is integral over K. So, the theorem holds.

(b) If X, is transcendental, then set X; = y;. Then, we get R = K[x;], which is integral over K[x,].
(iii) Now, let n = 2. If x4, ..., X, are algebraically independent, then set x; = y;, Vi and we're done. If
not, then there exists a non-zero polynomial f(X) € K[X4, ..., X,,] such that f(x4, ...,x,) = 0.




NOETHER’S NORMALIZATION THEOREM (CONTN.)

The polynomial can be written as f(X) = Yo co X%, where we use the notation X% =X;'..X;" for a=

(ag, ..., ap).
(iv) Rewriting the above polynomial as a polynomial in X; with coefficients in K[X,, ..., X,,], we have:

f(X) = XiLo Xy, - Xn)X]
Since f is non-zero, it involves at least one of the X; and we can assume it is X;. Now, we want to somehow
arrange to have fy = 1.Then, x; would be integral over K[x,, ..., X, ], which by induction on n would be integral
over K[ L], for some algebraically independent subset L. Since the integral extensions of integral extensions are
integral, the theorem follows.
(v) To make f monic, we perform a change of variables that transforms or “normalizes” f into a monic polynomial in
X;.LetY,,...Y, and y,, ...,y, € R be given by Y; = X; — X;ni,where the positive integers m; = d'~!, where d is an
integer greater than any of the exponents which occur in the polynomial f(X).This gives us a new polynomial
g(X, Yy, ... Yy) = (X4, ..., X)) € K[Xy, Yy, ..., Y] such that g(x4,v5, ..., ¥n) = 0.Then,

5(Xy,Yg, o, Yy) = z Ca X (XS + X,) 2 (XE + X5) o (X8 4 X))
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NOETHER’S NORMALIZATION THEOREM (CONTN.)

It is easy to see that K[X;,Y,, ..., Y,] = K[X{,X,, ..., X,,]. Now, the highest power of X; which
occurs is N = Y a;d"1. The coefficient of XY is c,. We can divide g by this non-zero constant
and make g monic in X; and we’re done by induction.

Relevance: Noether’s Normalization Theorem provides a refinement of the choice of
transcendental extensions so that certain ring extensions are integral extensions, not just

algebraic extensions.
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