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A problem with parametric integration

When two different parametrizations are used when integrating
a function over a surface, different values seem to appear.

Proof.
if φ1(x) = (x ,

√
1− x2)and φ2(θ) = (cos(θ), sin(θ))∫ 1

−1
1− x2dx 6=

∫ π
0

sin2(θ)dθ for
∫
y 2dy over the top half of a

circle

Our problem stems from the fact that the points φ1(ai) are
not evenly spaced along the curve



A problem with parametric integration

When two different parametrizations are used when integrating
a function over a surface, different values seem to appear.

Proof.
if φ1(x) = (x ,

√
1− x2)and φ2(θ) = (cos(θ), sin(θ))∫ 1

−1
1− x2dx 6=

∫ π
0

sin2(θ)dθ for
∫
y 2dy over the top half of a

circle

Our problem stems from the fact that the points φ1(ai) are
not evenly spaced along the curve



A problem with parametric integration

When two different parametrizations are used when integrating
a function over a surface, different values seem to appear.

Proof.
if φ1(x) = (x ,

√
1− x2)and φ2(θ) = (cos(θ), sin(θ))∫ 1

−1
1− x2dx 6=

∫ π
0

sin2(θ)dθ for
∫
y 2dy over the top half of a

circle

Our problem stems from the fact that the points φ1(ai) are
not evenly spaced along the curve



A calculated transformation

Using Riemann sums we can find an appropriate integral

n∑
i=1

F (ai)∆a =
n∑

i=1

f (φ1(ai))Li as n goes to infinity

lim∆a→0 F (ai) = lim∆a→0
f (φ1(ai ))Li

∆a
when boiled down has

F (a) = f (φ1(ai))

∣∣∣∣dφ1

da

∣∣∣∣ da
for lines in R2and similarly for surfaces in R3

F (a) = f (φ(a, b))Area(
dφ

da
,
dφ

db
)da db
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Forms

Definition (1-form)
A 1-form is simply a linear function denoted by ω which is fed
a vector and:

• projects onto each coordinate axis, scaling each by some
constant and adding the result

• projects onto some line and then multiplies by some
constant or

The vectors fed exist on on the tangent space to a point
denoted by TpR2 for a line and TpR3 for a surface
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Multiplying 1-forms

The multiplication of two one forms, say ω(V1) and υ(V2), is
considered a 2-form and denoted by ω ∧ υ(V1,V2) and is
evaluated in the following way:

ω ∧ υ(V1,V2) =

∣∣∣∣ω(V1) ω(V2)
υ(V1) υ(V2)

∣∣∣∣
Definition
for ω = adx + bdy + cdz , 〈ω〉 = 〈a, b, c〉

It is possible to show through the linearity of forms two unique
geometric and algebraic definitions
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ω ∧ υ = |〈ω〉| |〈υ〉| ω̄ ∧ ῡ

Evaluating ω ∧ υ on the pair of vectors (V1,V2) gives the area
of the parallelogram spanned by V1 and V2 projected onto the

plane containing the vectors 〈ω〉 and 〈υ〉, and multiplied by
the area of the parallelogram spanned by 〈ω〉 and 〈υ〉

ω ∧ υ = c1dx ∧ dy + c2dx ∧ dz + c3dy ∧ dz

Every 2-form projects the parallelogram spanned by V1 and V2

onto each of the (2-dimensional) coordinate planes, computes
the resulting (signed) areas, multiplies each by some constant,

and adds the results
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Differential Forms

Forms that are differentiable on a given interval can be used
more easily for our integral previously on the part which
involved Area(dφ

da
, dφ
db

)

Example

for the differential 2 form acting on two vector fields
V1 = 〈2y , 0,−x〉 and V2 = 〈z , 1, xy〉 with

ω = x2ydx ∧ dy − xzdy ∧ dz

ω(V1,V2) = x2y

∣∣∣∣2y z
0 1

∣∣∣∣− xz

∣∣∣∣ 0 1
−x xy

∣∣∣∣ = 2x2y 2 − x2z
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Integrating Forms

Through a similar proof as with the integral of a function we
associate the integral of a 2-form in R3 through equivalent
Riemann sums∑

i

∑
j

f (xi , yj)dx ∧ dy(V 1
i ,j ,V

2
i ,j) =

∑
i

∑
j

ωφ(xi ,yj )(V
1
i ,j ,V2

i ,j)

Through extensive calculations becomes:∫
M

ω =

∫
R

ωφ(x ,y)(
∂φ

∂x
,
∂φ

∂y
)dx ∧ dy

The orientation of the parametrization is crucial and can
switch based on the choice of V 1

i ,j and −V 1
i ,j
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Differentiating Forms

Since the variation of forms depends on the direction from an
arbitrary point p, the derivative of a 1 form can only be taken
as a 2-form with a chosen vector W.

dω(V ) = ∇ω(V ) ·W

Example

for ω = ydx − x2dy with V = 〈1, 2〉 and W = 〈2, 3〉

dw = 〈−4x , 1〉 · 〈2, 3〉 = −8x + 3
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An Approach to Stokes Theorem

an n-cell is defined as the image of a differentiable map and
denoted by σ where as a chain is a formal linear combination
of n-cells where ∫

C

ω =
∑
i

ni

∫
σi

ω

the boundary of a n-cell is denoted by ∂σ and is formulated

∂σ =
n∑

i=1

(−1)i+1(φ(x1,...,xi−1,1) − φ(x1,...,xi−1,0))
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An Approach to Stokes Theorem

Generalized Stokes Theorem:∫
∂σ

ω =

∫
σ

dω

Actual Stokes Theorem:∫
C

~F · d~r =

∫∫
S

Curl ~F · nd ~S
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THANK YOU!


