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Intro

Skolem’s Paradox: theorem of set theory.

”Not so much a paradox in terms of outright contradiction, but rather
a kind of anomaly” - Stephen Kleene, American Logician.
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Symbols (Countably Many)
Predicate Logic

Logical Symbols: ∧, ∨, ¬, ∀, ∃, →, ↔, =,...

Variables: x1, x2, x3...

Function/Constant/Relation Symbols: f1, R1, f2, R2,...

Example

The language of a ring with unity, besides having logical symbols, has 0, 1,
•, +.
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Sentences and Formulas
Predicate Logic

Sentence: A string of symbols with a truth value.

Formula: Would be a sentence if free variables are instantiated or
quantified.

Example

Let φ(x) be the formula ”x < 0”. We say that φ(x) is a formula with free
variable x. Then, ∃xφ(x) says ”∃x(x < 0)” and φ(0) says ”0 < 0”, both
sentences corresponding to φ(x).
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Axioms of ZFC
Some Examples

ZFC: Axiomatic Treatment of Set Theory

All variables represent objects which we call ’sets’, and our axioms are
in terms of the relation symbol ∈.

Extensionality: A set is determined by its members:
∀x∀y(∀z(z ∈ x ↔ z ∈ y)→ x = y)

Comprehension: For each formula φ(y) with only y occurring as a
free variable, for any set x ,
{z ∈ x : φ(z)} exists.

Pairing: ∀x∀y∃z(x ∈ z ∧ y ∈ z).

Example

Given x and y , Pairing guarantees a z such that x ∈ z , y ∈ z . By
Comprehension, {x , y} = {v ∈ z : v = x ∨ v = y} exists, and is unique by
Extensionality.
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Ordinals

A formal way of thinking of Natural numbers and beyond.

Definition

The following is a definition for finite ordinals:
1. 0 = {}, the empty set, also denoted ∅, is an ordinal
2. If α is an ordinal, S(α) = α ∪ {α} is also an ordinal.

Example

1 = {0} = {{}}
2 = {0, 1} = {{}, {{}}}
3 = {0, 1, 2} = {0, 1, {0, 1}}
n = {1, 2, 3, ..., n − 1}
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Axioms of ZFC
Infinity

Infinity: ∃x(0 ∈ x ∧ ∀y ∈ x(S(y) ∈ x))

Definition

The minimal set satisfying the Axiom of Infinity is called ω.

Remark

ω is the set of natural numbers.

Definition

A set S is said to be countable if there exists f : ω → S such that f is
onto.
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Axioms of ZFC
Power Set

Power Set: For each set x , there is a set containing every subset of x .

Definition

P(x) = {z : z ⊂ x} which is a subset of the set guaranteed by the Power
Set Axiom.

Theorem

For all x , there is no function from x onto P(x).

Corollary

There exists an uncountable set, namely, P(ω).
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Model Theory
Models

Given a set of symbols L, the pair (A,V ) is a structure for L if A is
a non-empty set and V consists of definitions of the symbols in L.

A structure for some set of symbols L, (A,V ) is a model for a set of
axioms Q, forthesymbolsof LifeverystatementinQistruein(A,V).

Example

Let L = {0, 1,+,×}. If V contains the standard definitions for 1, 0, +, ×,
then (Z,V ) is a structure for L. If Q contains the axioms for a ring with
unity, (Z,V ) is a model of Q.
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Model Theory
Substructures and Elementary Equivalence

(B,W ) is a substructure of (A,V ) if B ⊆ A and W contains the
definitions in V restricted to elements of B. We denote this by
(B,W ) ⊆ (A,V ).

(B,W ) is an elementary substructure of (A,V ) if (B,W ) ⊆ (A,V )
and for each sentence φ referencing only elements of B, φ is true in
(A,V ) if and only if φ is true in (B,W ). Then, we write
(B,W ) � (A,V ).

Example

For the standard interpretation of L = {0, 1,+,×}, Q ⊆ R. However,
Q � R since ∃x(x2 = 2) is true in R but not in Q.
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Model Theory
Downward Lowenheim-Skolem Theorem

Theorem (Lowenheim-Skolem)

Every structure has countable elementary substructure.

Example

The set of real algebraic numbers, Q\C, is a countable elementary
substructure of R.

Corollary

If ZFC is consistent, it has a countable model.

Skolem’s Paradox

There exists a countable model containing an uncountable set.
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How?

This uncountable set is P(ω), in particular.

Definition

P(ω) = {z : z ⊂ ω}

Clarification

In a model of ZFC, (A,V ), PA(ω) = {z ∈ A : z ⊂ ω}

Since A is countable and PA(ω) ⊆ A, PA(ω) must be countable
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How?

Definition

A set S is said to be countable if there exists f : ω → S such that f is
onto.

Clarification

A set S is said to be countable in a model of ZFC, (A,V ), if there exists
in A f : ω → S such that f is onto

So PA(ω) can still be uncountable in (A,V ) if none of the functions
which map ω onto PA(ω) are in A.

In fact, the pairing axiom guarantees that each element of any
function mapping ω onto PA(ω) are in A. However, ZFC provides no
way of proving that their collection exists.
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Outlook

Axiomatizing doesn’t always do what we want it to

Lowenheim Skolem theorem tells us that this will be unavoidable
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