Skolem's "Paradox"

Daniel Mourad Tim Mercure

DRP Talks, May 2014

Daniel Mourad, Tim Mercure

Skolem's "Paradox"

э DRP Talks, May 2014 1 / 14

- (A 🖓

э

- Skolem's Paradox: theorem of set theory.
- "Not so much a paradox in terms of outright contradiction, but rather a kind of anomaly" Stephen Kleene, American Logician.

- Logical Symbols: \land , \lor , \neg , \forall , \exists , \rightarrow , \leftrightarrow , =,...
- Variables: *x*₁, *x*₂, *x*₃...
- Function/Constant/Relation Symbols: f₁, R₁, f₂, R₂,...

The language of a ring with unity, besides having logical symbols, has 0, 1, •, +.

- Sentence: A string of symbols with a truth value.
- Formula: Would be a sentence if free variables are instantiated or quantified.

Let $\phi(x)$ be the formula "x < 0". We say that $\phi(x)$ is a formula with free variable x. Then, $\exists x \phi(x)$ says " $\exists x(x < 0)$ " and $\phi(0)$ says "0 < 0", both sentences corresponding to $\phi(x)$.

- ZFC: Axiomatic Treatment of Set Theory
- All variables represent objects which we call 'sets', and our axioms are in terms of the relation symbol ∈.
- Extensionality: A set is determined by its members: $\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y)$
- Comprehension: For each formula φ(y) with only y occurring as a free variable, for any set x, {z ∈ x : φ(z)} exists.

• Pairing:
$$\forall x \forall y \exists z (x \in z \land y \in z)$$
.

Given x and y, Pairing guarantees a z such that $x \in z, y \in z$. By Comprehension, $\{x, y\} = \{v \in z : v = x \lor v = y\}$ exists, and is unique by Extensionality. • A formal way of thinking of Natural numbers and beyond.

Definition

The following is a definition for finite ordinals: 1. $0 = \{\}$, the empty set, also denoted \emptyset , is an ordinal 2. If α is an ordinal, $S(\alpha) = \alpha \cup \{\alpha\}$ is also an ordinal.

Example

$$1 = \{0\} = \{\{\}\}\$$

$$2 = \{0, 1\} = \{\{\}, \{\{\}\}\}\$$

$$3 = \{0, 1, 2\} = \{0, 1, \{0, 1\}\}\$$

$$n = \{1, 2, 3, ..., n - 1\}$$

• Infinity:
$$\exists x (0 \in x \land \forall y \in x (S(y) \in x))$$

Definition

The minimal set satisfying the Axiom of Infinity is called ω .

Remark

 ω is the set of natural numbers.

Definition

A set S is said to be **countable** if there exists $f : \omega \to S$ such that f is onto.

• Power Set: For each set x, there is a set containing every subset of x.

Definition

 $\mathcal{P}(x) = \{z : z \subset x\}$ which is a subset of the set guaranteed by the Power Set Axiom.

Theorem

For all x, there is no function from x onto $\mathcal{P}(x)$.

Corollary

There exists an uncountable set, namely, $\mathcal{P}(\omega)$.

- Given a set of symbols \mathcal{L} , the pair (A, V) is a **structure** for \mathcal{L} if A is a non-empty set and V consists of definitions of the symbols in \mathcal{L} .
- A structure for some set of symbols \mathcal{L} , (A, V) is a **model** for a set of axioms Q, forthesymbolsof LifeverystatementinQistruein(A,V).

Let $\mathcal{L} = \{0, 1, +, \times\}$. If V contains the standard definitions for 1, 0, +, ×, then (\mathbb{Z}, V) is a structure for \mathcal{L} . If Q contains the axioms for a ring with unity, (\mathbb{Z}, V) is a model of Q.

- (B, W) is a substructure of (A, V) if B ⊆ A and W contains the definitions in V restricted to elements of B. We denote this by (B, W) ⊆ (A, V).
- (B, W) is an elementary substructure of (A, V) if $(B, W) \subseteq (A, V)$ and for each sentence ϕ referencing only elements of B, ϕ is true in (A, V) if and only if ϕ is true in (B, W). Then, we write $(B, W) \preceq (A, V)$.

For the standard interpretation of $\mathcal{L} = \{0, 1, +, \times\}$, $\mathbb{Q} \subseteq \mathbb{R}$. However, $\mathbb{Q} \not\preceq \mathbb{R}$ since $\exists x(x^2 = 2)$ is true in \mathbb{R} but not in \mathbb{Q} .

Theorem (Lowenheim-Skolem)

Every structure has countable elementary substructure.

Example

The set of real algebraic numbers, $\overline{\mathbb{Q}} \setminus \mathbb{C}$, is a countable elementary substructure of \mathbb{R} .

Corollary

If ZFC is consistent, it has a countable model.

Skolem's Paradox

There exists a countable model containing an uncountable set.

Daniel Mourad, Tim Mercure

• This uncountable set is $\mathcal{P}(\omega)$, in particular.

Definition

 $\mathcal{P}(\omega) = \{z : z \subset \omega\}$

Clarification

In a model of ZFC, (A, V), $\mathcal{P}^{A}(\omega) = \{z \in A : z \subset \omega\}$

• Since A is countable and $\mathcal{P}^{A}(\omega) \subseteq A$, $\mathcal{P}^{A}(\omega)$ must be countable

3

イロト 不得下 イヨト イヨト

Definition

A set S is said to be countable if there exists $f : \omega \to S$ such that f is onto.

Clarification

A set S is said to be countable in a model of ZFC, (A, V), if there exists in $A f : \omega \to S$ such that f is onto

- So P^A(ω) can still be uncountable in (A, V) if none of the functions which map ω onto P^A(ω) are in A.
- In fact, the pairing axiom guarantees that each element of any function mapping ω onto P^A(ω) are in A. However, ZFC provides no way of proving that their collection exists.

- 4 同 6 4 日 6 4 日 6

- Axiomatizing doesn't always do what we want it to
- Lowenheim Skolem theorem tells us that this will be unavoidable