Classification of Semisimple Lie Algebras

Kyle Reese

December 2019

(ロ)、(型)、(E)、(E)、 E) の(()

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで

Definition

A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Definition

A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.

Definition

A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication. So is $SL(n, \mathbb{C})$

Definition

A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.

So is $SL(n, \mathbb{C})$, and U(n)

Definition

A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.

So is $SL(n, \mathbb{C})$, and U(n), SO(n)

Definition

A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example

The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.

So is $SL(n, \mathbb{C})$, and U(n), SO(n), and more.

Definition

A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

Example

The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication. So is $SL(n, \mathbb{C})$, and U(n), SO(n), and more.

Definition

A Matrix Lie Group is a **closed** subgroup $G \leq GL(n, \mathbb{C})$. That is, whenever $\{A_n\} \subseteq G$ converges to A, then either $A \in G$ or $A \notin GL(n, \mathbb{C})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

A Lie Group G is a group that is also a differentiable manifold such that its group operations are smooth.

Example

The set of matrices $GL(n, \mathbb{C})$ is a Lie Group under matrix multiplication.

So is $SL(n, \mathbb{C})$, and U(n), SO(n), and more.

Definition

A Matrix Lie Group is a **closed** subgroup $G \leq GL(n, \mathbb{C})$. That is, whenever $\{A_n\} \subseteq G$ converges to A, then either $A \in G$ or $A \notin GL(n, \mathbb{C})$.

For example: $SL(n, \mathbb{C})$ is a Matrix Lie Group because it is a subgroup of $GL(n, \mathbb{C})$, and if $\{A_n\} \subseteq SL(n, \mathbb{C})$ converges to A, then $A \in SL(n, \mathbb{C})$ because each A_n has determinant one and the determinant function is continuous.

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Definition

A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Definition

A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Two elements $X, Y \in \mathfrak{g}$ are said to commute if [X, Y] = 0.

Definition

A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

Two elements $X, Y \in \mathfrak{g}$ are said to commute if [X, Y] = 0.

Given a differentiable manifold M and a point p ∈ M, the set of tangent vectors at p is denoted T_p(M).

Definition

A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

Two elements $X, Y \in \mathfrak{g}$ are said to commute if [X, Y] = 0.

- Given a differentiable manifold M and a point p ∈ M, the set of tangent vectors at p is denoted T_p(M).
- ▶ Every Lie Group *G* has an associated Lie Algebra $\mathfrak{g} = T_0G$, where $0 \in G$ is the identity element.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

Two elements $X, Y \in \mathfrak{g}$ are said to commute if [X, Y] = 0.

- Given a differentiable manifold M and a point p ∈ M, the set of tangent vectors at p is denoted T_p(M).
- ▶ Every Lie Group *G* has an associated Lie Algebra $\mathfrak{g} = T_0G$, where $0 \in G$ is the identity element.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example

 \mathbb{R}^3 with $[x, y] = x \times y$ is also a Lie Algebra.

Definition

A Lie Algebra \mathfrak{g} is a vector space along with a map $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$$

Two elements $X, Y \in \mathfrak{g}$ are said to commute if [X, Y] = 0.

- Given a differentiable manifold M and a point p ∈ M, the set of tangent vectors at p is denoted T_p(M).
- ▶ Every Lie Group *G* has an associated Lie Algebra $\mathfrak{g} = T_0G$, where $0 \in G$ is the identity element.

Example

 \mathbb{R}^3 with $[x, y] = x \times y$ is also a Lie Algebra. gl(V), the set of linear maps from V to itself, is a Lie Algebra with bracket [x, y] = xy - yx.

Matrix Lie Algebras

Recall the matrix exponential map:

Matrix Lie Algebras

Recall the matrix exponential map:

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

Matrix Lie Algebras

Recall the matrix exponential map:

$$e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

It can be shown that this above mapping converges for any complex-valued A, and is in fact continuous.

Recall the matrix exponential map:

$$e^{A} = \sum_{k=0}^{\infty} \frac{A^{k}}{k!}$$

It can be shown that this above mapping converges for any complex-valued A, and is in fact continuous. In the case that G is a Matrix Lie Group, the Lie Algebra of G can be computed more practically as the set of complex matrices X such that $e^{tX} \in G$ for every real t.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

▶ We seek matrices such that $e^{tX} \in SL(n, \mathbb{C})$

We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.

We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We can show that for a general X, we have that det(e^X) = e^{tr(X)}.

- We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.
- We can show that for a general X, we have that det(e^X) = e^{tr(X)}.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Thus,
$$det(e^{tX}) = e^{t \cdot tr(X)}$$
.

- We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.
- We can show that for a general X, we have that det(e^X) = e^{tr(X)}.
- ▶ Thus, $det(e^{tX}) = e^{t \cdot tr(X)}$. So if tr(X) = 0 then $e^{t \cdot tr(X)} = 1$, and so $det(e^{tX}) = 1$ as well.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.
- We can show that for a general X, we have that det(e^X) = e^{tr(X)}.
- ► Thus, det(e^{tX}) = e^{t·tr(X)}. So if tr(X) = 0 then e^{t·tr(X)} = 1, and so det(e^{tX}) = 1 as well. So X is in the associated Lie Algebra.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.
- We can show that for a general X, we have that det(e^X) = e^{tr(X)}.
- ► Thus, det(e^{tX}) = e^{t·tr(X)}. So if tr(X) = 0 then e^{t·tr(X)} = 1, and so det(e^{tX}) = 1 as well. So X is in the associated Lie Algebra.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Conversely, suppose that $det(e^{tX}) = 1 = e^{t \cdot tr(X)}$.

- We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.
- We can show that for a general X, we have that det(e^X) = e^{tr(X)}.
- ► Thus, det(e^{tX}) = e^{t·tr(X)}. So if tr(X) = 0 then e^{t·tr(X)} = 1, and so det(e^{tX}) = 1 as well. So X is in the associated Lie Algebra.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conversely, suppose that det(e^{tX}) = 1 = e^{t·tr(X)}. Then differentiating with respect to t we get that

- We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.
- We can show that for a general X, we have that det(e^X) = e^{tr(X)}.
- ► Thus, det(e^{tX}) = e^{t·tr(X)}. So if tr(X) = 0 then e^{t·tr(X)} = 1, and so det(e^{tX}) = 1 as well. So X is in the associated Lie Algebra.
- Conversely, suppose that det(e^{tX}) = 1 = e^{t·tr(X)}. Then differentiating with respect to t we get that

$$tr(X) = \frac{d}{dt} \left[e^{t \cdot tr(X)} \right]_{t=0} = 0$$

- We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.
- We can show that for a general X, we have that det(e^X) = e^{tr(X)}.
- ► Thus, det(e^{tX}) = e^{t·tr(X)}. So if tr(X) = 0 then e^{t·tr(X)} = 1, and so det(e^{tX}) = 1 as well. So X is in the associated Lie Algebra.
- Conversely, suppose that det(e^{tX}) = 1 = e^{t·tr(X)}. Then differentiating with respect to t we get that

$$tr(X) = \frac{d}{dt} \left[e^{t \cdot tr(X)} \right]_{t=0} = 0$$

▶ So $e^{tX} \in SL(n, \mathbb{C})$ if and only if tr(X) = 0.

- We seek matrices such that e^{tX} ∈ SL(n, C), that is det(e^{tX}) = 1.
- We can show that for a general X, we have that det(e^X) = e^{tr(X)}.
- ► Thus, det(e^{tX}) = e^{t·tr(X)}. So if tr(X) = 0 then e^{t·tr(X)} = 1, and so det(e^{tX}) = 1 as well. So X is in the associated Lie Algebra.
- Conversely, suppose that det(e^{tX}) = 1 = e^{t·tr(X)}. Then differentiating with respect to t we get that

$$tr(X) = \frac{d}{dt} \left[e^{t \cdot tr(X)} \right]_{t=0} = 0$$

So e^{tX} ∈ SL(n, C) if and only if tr(X) = 0. We denote the set of traceless matrices sl(n, C). This is the Lie Algebra of SL(n, C)!

Representations

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Representations

Definition

A Representation of a Lie Algebra \mathfrak{g} is a Lie Algebra Homomorphism $\pi : \mathfrak{g} \to gl(V)$. Here, a Lie Algebra Homomorphism is a linear map that preserves the bracket:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Representations

Definition

A Representation of a Lie Algebra \mathfrak{g} is a Lie Algebra Homomorphism $\pi : \mathfrak{g} \to gl(V)$. Here, a Lie Algebra Homomorphism is a linear map that preserves the bracket:

 $\pi([X,Y]) = [\pi(X),\pi(Y)]$

Representations

Definition

A Representation of a Lie Algebra \mathfrak{g} is a Lie Algebra Homomorphism $\pi : \mathfrak{g} \to gl(V)$. Here, a Lie Algebra Homomorphism is a linear map that preserves the bracket:

$$\pi([X,Y]) = [\pi(X),\pi(Y)]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Every Lie Algebra \mathfrak{g} has a natural representation given by the adjoint mapping: $\rho : \mathfrak{g} \to g/(\mathfrak{g}), \rho(X) = [X, \cdot].$

Representations

Definition

A Representation of a Lie Algebra \mathfrak{g} is a Lie Algebra Homomorphism $\pi : \mathfrak{g} \to gl(V)$. Here, a Lie Algebra Homomorphism is a linear map that preserves the bracket:

$$\pi([X,Y]) = [\pi(X),\pi(Y)]$$

Every Lie Algebra \mathfrak{g} has a natural representation given by the adjoint mapping: $\rho : \mathfrak{g} \to gl(\mathfrak{g}), \rho(X) = [X, \cdot]$. Let us study this representation further.

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

Let us suppose that g has no nonzero abelian ideals.

- Let us suppose that g has no nonzero abelian ideals.
- Then g has a maximal abelian subalgebra h called its Cartan subalgebra.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Let us suppose that \mathfrak{g} has no nonzero abelian ideals.
- Then g has a maximal abelian subalgebra h called its Cartan subalgebra.
- ▶ A nonzero $\alpha \in \mathfrak{h}$ is called a **root** if there is a nonzero $X \in \mathfrak{g}$

$$[H,X] = \overline{\alpha}(H)X = \langle \alpha, H \rangle X$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for each $H \in \mathfrak{h}$.

- Let us suppose that g has no nonzero abelian ideals.
- Then g has a maximal abelian subalgebra h called its Cartan subalgebra.
- A nonzero $\alpha \in \mathfrak{h}$ is called a **root** if there is a nonzero $X \in \mathfrak{g}$

$$[H, X] = \overline{\alpha}(H)X = \langle \alpha, H \rangle X$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for each $H \in \mathfrak{h}$. The set of roots is denoted R. An X that satisfies the above is called a **root vector**.

- Let us suppose that \mathfrak{g} has no nonzero abelian ideals.
- Then g has a maximal abelian subalgebra h called its Cartan subalgebra.
- A nonzero $\alpha \in \mathfrak{h}$ is called a **root** if there is a nonzero $X \in \mathfrak{g}$

$$[H,X] = \overline{\alpha}(H)X = \langle \alpha, H \rangle X$$

for each $H \in \mathfrak{h}$. The set of roots is denoted R. An X that satisfies the above is called a **root vector**. The set \mathfrak{g}_{α} of vectors X that satisfy the above property is called the **root space** w.r.t α .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Let us suppose that \mathfrak{g} has no nonzero abelian ideals.
- Then g has a maximal abelian subalgebra h called its Cartan subalgebra.
- A nonzero $\alpha \in \mathfrak{h}$ is called a **root** if there is a nonzero $X \in \mathfrak{g}$

$$[H,X] = \overline{\alpha}(H)X = \langle \alpha, H \rangle X$$

for each $H \in \mathfrak{h}$. The set of roots is denoted R. An X that satisfies the above is called a **root vector**. The set \mathfrak{g}_{α} of vectors X that satisfy the above property is called the **root** space w.r.t α .

 We can actually decompose g into a direct sum of its root spaces

- Let us suppose that g has no nonzero abelian ideals.
- Then g has a maximal abelian subalgebra h called its Cartan subalgebra.
- A nonzero $\alpha \in \mathfrak{h}$ is called a **root** if there is a nonzero $X \in \mathfrak{g}$

$$[H,X] = \overline{\alpha}(H)X = \langle \alpha, H \rangle X$$

for each $H \in \mathfrak{h}$. The set of roots is denoted R. An X that satisfies the above is called a **root vector**. The set \mathfrak{g}_{α} of vectors X that satisfy the above property is called the **root space** w.r.t α .

We can actually decompose g into a direct sum of its root spaces:

$$\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{lpha \in \mathcal{R}} \mathfrak{g}_{lpha}$$

(4日) (個) (目) (目) (目) (の)()

Let us choose the basis:

Let us choose the basis:

$$H_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, H_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
$$X_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, X_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, X_{3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$Y_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, Y_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, Y_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let us choose the basis:

$$H_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, H_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
$$X_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, X_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, X_{3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$Y_{1} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, Y_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, Y_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Here, our Cartan subalgebra is $\mathfrak{h} = span\{H_1, H_2\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Using the above basis, we see that

Using the above basis, we see that

$$[H_1, X_1] = 2X_1, [H_2, X_1] = -X_1$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Using the above basis, we see that

$$[H_1, X_1] = 2X_1, [H_2, X_1] = -X_1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Because H_1, H_2 serve as a basis for \mathfrak{h} , for any $H \in \mathfrak{h}, H = aH_1 + bH_2$, and so we have

Using the above basis, we see that

$$[H_1, X_1] = 2X_1, [H_2, X_1] = -X_1$$

Because H_1, H_2 serve as a basis for \mathfrak{h} , for any $H \in \mathfrak{h}, H = aH_1 + bH_2$, and so we have

$$[H,X_1]=(2a-b)X_1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Using the above basis, we see that

$$[H_1, X_1] = 2X_1, [H_2, X_1] = -X_1$$

Because H_1, H_2 serve as a basis for \mathfrak{h} , for any $H \in \mathfrak{h}, H = aH_1 + bH_2$, and so we have

$$[H,X_1]=(2a-b)X_1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

So X_1 is a root vector, corresponding to the root $\overline{\alpha}(H) = \overline{\alpha}(aH_1 + bH_2) = 2a - b.$

- < ロ > ・ 目 > ・ 目 > ・ 目 - の へ ()・

Definition

A root system (E, R) is a finite-dimensional real vector space E with an inner product $\langle \cdot, \cdot \rangle$ together with a finite set of nonzero vectors $R \subseteq E$ such that

Definition

A root system (E, R) is a finite-dimensional real vector space E with an inner product $\langle \cdot, \cdot \rangle$ together with a finite set of nonzero vectors $R \subseteq E$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

R spans E

Definition

A root system (E, R) is a finite-dimensional real vector space E with an inner product $\langle \cdot, \cdot \rangle$ together with a finite set of nonzero vectors $R \subseteq E$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

R spans E

▶ If $\alpha \in R$ and $c \in \mathbb{R}$, then $c\alpha \in R$ only if $c = \pm 1$

Definition

A root system (E, R) is a finite-dimensional real vector space E with an inner product $\langle \cdot, \cdot \rangle$ together with a finite set of nonzero vectors $R \subseteq E$ such that

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

R spans E

- ▶ If $\alpha \in R$ and $c \in \mathbb{R}$, then $c\alpha \in R$ only if $c = \pm 1$
- ▶ If $\alpha, \beta \in R$, then so is

Definition

A root system (E, R) is a finite-dimensional real vector space E with an inner product $\langle \cdot, \cdot \rangle$ together with a finite set of nonzero vectors $R \subseteq E$ such that

R spans E

- ▶ If $\alpha \in R$ and $c \in \mathbb{R}$, then $c\alpha \in R$ only if $c = \pm 1$
- ▶ If $\alpha, \beta \in R$, then so is

$$eta - 2 rac{\langle eta, lpha
angle}{\langle lpha, lpha
angle} lpha$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A root system (E, R) is a finite-dimensional real vector space E with an inner product $\langle \cdot, \cdot \rangle$ together with a finite set of nonzero vectors $R \subseteq E$ such that

R spans E

- ▶ If $\alpha \in R$ and $c \in \mathbb{R}$, then $c\alpha \in R$ only if $c = \pm 1$
- ▶ If $\alpha, \beta \in R$, then so is

$$eta - 2 rac{\langle eta, lpha
angle}{\langle lpha, lpha
angle} lpha$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For every $\alpha, \beta \in R$,

Definition

A root system (E, R) is a finite-dimensional real vector space E with an inner product $\langle \cdot, \cdot \rangle$ together with a finite set of nonzero vectors $R \subseteq E$ such that

R spans E

- ▶ If $\alpha \in R$ and $c \in \mathbb{R}$, then $c\alpha \in R$ only if $c = \pm 1$
- ▶ If $\alpha, \beta \in R$, then so is

$$eta - 2 rac{\langle eta, lpha
angle}{\langle lpha, lpha
angle} lpha$$

For every $\alpha, \beta \in R$,

$$2\frac{\langle\beta,\alpha\rangle}{\langle\alpha,\alpha\rangle}\in\mathbb{Z}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$.

・ロト ・西ト ・ヨト ・ヨー うへぐ

Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

$$\blacktriangleright \langle \alpha, \beta \rangle = \mathbf{0}.$$

Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

•
$$\langle \alpha, \beta \rangle = 0.$$

• $\langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle$ and $\theta = \frac{\pi}{3}, \frac{2\pi}{3}.$

Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

$$\begin{array}{l} \diamond \ \langle \alpha, \beta \rangle = 0. \\ \diamond \ \langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle \text{ and } \theta = \frac{\pi}{3}, \frac{2\pi}{3}. \\ \bullet \ \langle \alpha, \alpha \rangle = 2 \langle \beta, \beta \rangle \text{ and } \theta = \frac{\pi}{4}, \frac{3\pi}{4}. \end{array}$$

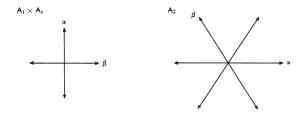
Suppose α, β are roots that are not colinear and θ is the angle between them. Further, suppose $\langle \alpha, \alpha \rangle \geq \langle \beta, \beta \rangle$. Then one of the following is true:

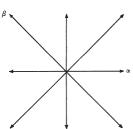
$$\begin{array}{l} \diamond \langle \alpha, \beta \rangle = \mathbf{0}. \\ \diamond \langle \alpha, \alpha \rangle = \langle \beta, \beta \rangle \text{ and } \theta = \frac{\pi}{3}, \frac{2\pi}{3}. \\ \diamond \langle \alpha, \alpha \rangle = 2\langle \beta, \beta \rangle \text{ and } \theta = \frac{\pi}{4}, \frac{3\pi}{4}. \\ \diamond \langle \alpha, \alpha \rangle = 3\langle \beta, \beta \rangle \text{ and } \theta = \frac{\pi}{6}, \frac{5\pi}{6}. \end{array}$$

Rank 2 Root Configurations

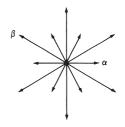
(4日) (個) (目) (目) (目) (の)()

Rank 2 Root Configurations





 G_2



< ≧ ▶ ≧ ∽ Q (~

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - - のへで

Definition Given a root system $(E, R), \Delta \subseteq R$ is a **base** if

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition

Given a root system $(E, R), \Delta \subseteq R$ is a **base** if

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Δ is a basis for E

Definition

Given a root system $(E, R), \Delta \subseteq R$ is a **base** if

- \blacktriangleright Δ is a basis for *E*
- Each α ∈ R can be expressed as a linear combination of elements of Δ with either all non-negative or non-positive integer coefficients.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

Given a root system $(E, R), \Delta \subseteq R$ is a **base** if

- Δ is a basis for *E*
- Each α ∈ R can be expressed as a linear combination of elements of Δ with either all non-negative or non-positive integer coefficients.

Elements of Δ are called positive simple roots.

Definition

Given a root system $(E, R), \Delta \subseteq R$ is a **base** if

- Δ is a basis for *E*
- ► Each α ∈ R can be expressed as a linear combination of elements of Δ with either all non-negative or non-positive integer coefficients.

Elements of Δ are called positive simple roots.

Given a base $\Delta = \{\alpha_1, \ldots, \alpha_n\}$, we can understand the root system via the values of $\langle \alpha_i, \alpha_j \rangle$ for $i \neq j$ and the relative sizes of the $||\alpha_i||$.

Definition

Given a root system $(E, R), \Delta \subseteq R$ is a **base** if

- Δ is a basis for *E*
- ► Each α ∈ R can be expressed as a linear combination of elements of Δ with either all non-negative or non-positive integer coefficients.

Elements of Δ are called positive simple roots.

Given a base $\Delta = \{\alpha_1, \ldots, \alpha_n\}$, we can understand the root system via the values of $\langle \alpha_i, \alpha_j \rangle$ for $i \neq j$ and the relative sizes of the $||\alpha_i||$. These are encoded in Dynkin Diagrams.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Set a vertex *i* for each $\alpha_i \in \Delta$.

- Set a vertex *i* for each $\alpha_i \in \Delta$.
- The number of edges connected vertex *i* and vertex *j* is equal to the value of (α_i, α_j).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Set a vertex *i* for each $\alpha_i \in \Delta$.
- ► The number of edges connected vertex *i* and vertex *j* is equal to the value of $\langle \alpha_i, \alpha_j \rangle$. Namely, this encodes the information about the angle between α_i and α_j .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Set a vertex *i* for each $\alpha_i \in \Delta$.
- ► The number of edges connected vertex *i* and vertex *j* is equal to the value of $\langle \alpha_i, \alpha_j \rangle$. Namely, this encodes the information about the angle between α_i and α_j . For instance, if there is one edge between α_1 and α_2 then the angle between them is $\frac{2\pi}{3}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Set a vertex *i* for each $\alpha_i \in \Delta$.

- The number of edges connected vertex *i* and vertex *j* is equal to the value of (α_i, α_j). Namely, this encodes the information about the angle between α_i and α_j. For instance, if there is one edge between α₁ and α₂ then the angle between them is ^{2π}/₃.
- ► Add arrows (> or <) on the edges connecting vertices i and j to encode whether ||α_i|| > ||α_j||.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Set a vertex *i* for each $\alpha_i \in \Delta$.

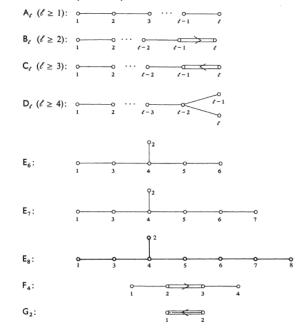
- The number of edges connected vertex *i* and vertex *j* is equal to the value of (α_i, α_j). Namely, this encodes the information about the angle between α_i and α_j. For instance, if there is one edge between α₁ and α₂ then the angle between them is ^{2π}/₃.
- Add arrows (> or <) on the edges connecting vertices i and j to encode whether ||α_i|| > ||α_j||.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem

If (E, R) is a root system with dim $(E) = \ell$, then its Dynkin Diagram is one of the following.

Dynkin Diagrams (cont.)



▶ ▲ 臣 ▶ 臣 • • • • ●

► A Lie Algebra's roots correspond to a root system.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A Lie Algebra's roots correspond to a root system. Namely, (E, R) = (h, R).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

A Lie Algebra's roots correspond to a root system. Namely, (E, R) = (h, R).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

We can classify root systems

- A Lie Algebra's roots correspond to a root system. Namely, (E, R) = (h, R).
- We can classify root systems, so we can classify semisimple Lie Algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- A Lie Algebra's roots correspond to a root system. Namely, (E, R) = (h, R).
- We can classify root systems, so we can classify semisimple Lie Algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"Fantastic Theorem"

- A Lie Algebra's roots correspond to a root system. Namely, (E, R) = (h, R).
- We can classify root systems, so we can classify semisimple Lie Algebras
- "Fantastic Theorem": given an abstract root system, there is a unique (up to isomorphism) semisimple Lie Algebra over C which has this abstract system as its root system.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ► A Lie Algebra's roots correspond to a root system. Namely, (E, R) = (𝔥, R).
- We can classify root systems, so we can classify semisimple Lie Algebras
- "Fantastic Theorem": given an abstract root system, there is a unique (up to isomorphism) semisimple Lie Algebra over C which has this abstract system as its root system.
- Two semisimple, complex Lie Algebras are isomorphic if and only if their root systems are isomorphic!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めぬぐ

Throughout this talk we studied the "natural" representation ρ(X) = [X, ·].

► Throughout this talk we studied the "natural" representation ρ(X) = [X, ·].

• The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V).$

- ► Throughout this talk we studied the "natural" representation ρ(X) = [X, ·].
- The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.
- Roots become weights, we can decompose V into a direct sum of weight spaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ► Throughout this talk we studied the "natural" representation ρ(X) = [X, ·].
- The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.
- Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = igoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ► Throughout this talk we studied the "natural" representation ρ(X) = [X, ·].
- The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.
- Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = igoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

weights will have certain configurations, etc.

- ► Throughout this talk we studied the "natural" representation ρ(X) = [X, ·].
- The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.
- Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = igoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

weights will have certain configurations, etc.

This allows us to classify the representations of a Lie Algebra g to a finite-dimensional vector space V.

- ► Throughout this talk we studied the "natural" representation ρ(X) = [X, ·].
- The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.
- Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = igoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

weights will have certain configurations, etc.

- This allows us to classify the representations of a Lie Algebra g to a finite-dimensional vector space V.
- Through study of the weight lattice and root lattice (the Z-span of the weights/roots respectively)

- ► Throughout this talk we studied the "natural" representation ρ(X) = [X, ·].
- The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.
- Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = igoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

weights will have certain configurations, etc.

- This allows us to classify the representations of a Lie Algebra g to a finite-dimensional vector space V.
- Through study of the weight lattice and root lattice (the Z-span of the weights/roots respectively), we have that

weight lattice/root lattice

is a finite group

- ► Throughout this talk we studied the "natural" representation ρ(X) = [X, ·].
- The above discussion generalizes to any representation $\pi : \mathfrak{g} \to gl(V)$.
- Roots become weights, we can decompose V into a direct sum of weight spaces

$$V = igoplus_{\lambda \in \mathfrak{h}^*} V_\lambda$$

weights will have certain configurations, etc.

- This allows us to classify the representations of a Lie Algebra g to a finite-dimensional vector space V.
- Through study of the weight lattice and root lattice (the Z-span of the weights/roots respectively), we have that

weight lattice/root lattice

is a finite group

References

- Brian C. Hall. Lie Groups, Lie Algebras, and Representations, 2 ed. Springer, 2015.
- James E. Humphreys. Introduction to Lie Algebras and Representation Theory. Springer, 1972.
- Jeffrey Adams. Computer Computations in Representation Theory II: Root Systems and Weyl Groups.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00