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What is a Lie Group?

Definition
A Lie Group G is a group that is also a differentiable manifold such
that its group operations are smooth.

Example

The set of matrices GL(n,C) is a Lie Group under matrix

multiplication.
So is SL(n,C), and U(n), SO(n), and more.

Definition

A Matrix Lie Group is a closed subgroup G < GL(n,C). That is,
whenever {A,} C G converges to A, then either A€ G or

A ¢ GL(n,C).

For example: SL(n,C) is a Matrix Lie Group because it is a
subgroup of GL(n,C), and if {A,} C SL(n,C) converges to A,
then A € SL(n, C) because each A, has determinant one and the
determinant function is continuous.
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Tangent Spaces and Lie Algebras

Definition
A Lie Algebra g is a vector space along with a map [-,-] :gxg—g¢
that is bilinear, skew symmetric, and satisfies the Jacobi Identity:

[X,[Y7Z]]—|—[Y, [ZvX]]+ [27 [X’ Y]] =0

Two elements X, Y € g are said to commute if [X, Y] = 0.

» Given a differentiable manifold M and a point p € M, the set
of tangent vectors at p is denoted T,(M).

» Every Lie Group G has an associated Lie Algebra g = TG,
where 0 € G is the identity element.

Example
R3 with [x,y] = x x y is also a Lie Algebra. g/(V), the set of
linear maps from V to itself, is a Lie Algebra with bracket

[x,y] = xy — yx.
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Matrix Lie Algebras

Recall the matrix exponential map:

o Ak
k!
k=0
It can be shown that this above mapping converges for any
complex-valued A, and is in fact continuous.
In the case that G is a Matrix Lie Group, the Lie Algebra of G can
be computed more practically as the set of complex matrices X

such that e?X € G for every real t.
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> We seek matrices such that eX € SL(n, C), that is
det(eX) = 1.

» We can show that for a general X, we have that
det(eX) = etr(X),

» Thus, det(eX) = et't(X). So if tr(X) = 0 then et'r(X) =1,
and so det(e™) =1 as well. So X is in the associated Lie
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> Conversely, suppose that det(etX) =1 = et't"(X). Then
differentiating with respect to t we get that
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Example: Computing the Lie Algebra of SL(n, C)

> We seek matrices such that eX € SL(n, C), that is
det(eX) = 1.

» We can show that for a general X, we have that
det(eX) = etr(X),

» Thus, det(eX) = et't(X). So if tr(X) = 0 then et'r(X) =1,
and so det(e™) =1 as well. So X is in the associated Lie
Algebra.

> Conversely, suppose that det(etX) =1 = et't"(X). Then
differentiating with respect to t we get that

tr(X) = %[et'”(x)} =0

» So eX € SL(n,C) if and only if tr(X) = 0. We denote the set
of traceless matrices s/(n,C). This is the Lie Algebra of
SL(n,C)!
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Representations

Definition

A Representation of a Lie Algebra g is a Lie Algebra
Homomorphism 7 : g — g/(V'). Here, a Lie Algebra
Homomorphism is a linear map that preserves the bracket:

(X, Y]) = [x(X), =(Y)]

Every Lie Algebra g has a natural representation given by the
adjoint mapping: p: g — gl(g), p(X) = [X,]. Let us study this
representation further.
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Direct Sum Decompositions

P Let us suppose that g has no nonzero abelian ideals.

» Then g has a maximal abelian subalgebra b called its Cartan
subalgebra.

> A nonzero « € by is called a root if there is a nonzero X € g
[H, X] =a(H)X = (a, H)X

for each H € hh. The set of roots is denoted R. An X that
satisfies the above is called a root vector. The set g, of
vectors X that satisfy the above property is called the root
space w.r.t o.

» We can actually decompose g into a direct sum of its root
spaces:

g:h@@ga

a€eR
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An Example in s/(3,C)

Let us choose the basis:

1 0 0 00 O

(0 0 0 00 -1

[0 1 0] [0 0 0]
Xi=|000|,%=[001]|,X=

|0 0 0 |00 0

[0 0 0] [0 0 0]
Yi=|100]|,Ya=|000]|,¥5=

|00 0 01 0

Here, our Cartan subalgebra is h = span{H1, H>}.

OO O O oo
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An Example In s/(3,C) (cont.)

Using the above basis, we see that

[H17X1] = 2X17 [H27X1] = _Xl

Because Hi, H» serve as a basis for b, for any
H e h,H= aH; + bH>, and so we have

[H,X1] = (2a — b)Xy

So Xj is a root vector, corresponding to the root
a(H) = a(aHy + bHy) =2a— b.
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Root Systems

Definition
A root system (E, R) is a finite-dimensional real vector space E
with an inner product (-, -) together with a finite set of nonzero

vectors R C E such that

» R spans E
» If « € Rand c € R, then ca € R only if c = +1

> If o, 8 € R, then so is

(B, )
P o)
» For every a, 8 € R,

(o, a)
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Possible Root Configurations

Suppose «, 3 are roots that are not colinear and @ is the angle

between them. Further, suppose (o, ) > (3, 8). Then one of the
following is true:

> (a, ) =0.

> (a,a) = (8,5) and § = 5, 7.
> (a,a) =2(8,8) and § = 7. 3.
> (a,a) =3(8,p) and 0 = §, 3.

7
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General Root Configurations

Definition
Given a root system (E,R),A C R is a base if
> A is a basis for E
> Each a € R can be expressed as a linear combination of
elements of A with either all non-negative or non-positive
integer coefficients.
Elements of A are called positive simple roots.

Given a base A = {a1,...,an}, we can understand the root
system via the values of («;, a;) for i # j and the relative sizes of
the ||a;||. These are encoded in Dynkin Diagrams.
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Dynkin Diagrams

> Set a vertex i for each «; € A.

» The number of edges connected vertex i and vertex j is equal
to the value of (aj, ). Namely, this encodes the information
about the angle between «; and «;. For instance, if there is

one edge between o and ap then the angle between them is
2
T.

» Add arrows (> or <) on the edges connecting vertices i and j
to encode whether ||o|| > |||

Theorem
If (E, R) is a root system with dim(E) = /¢, then its Dynkin
Diagram is one of the following.



Dynkin Diagrams (cont.)

A, (f=z1); o0—o0——0
2

B, (£>2):

C, (=3

D, (¢ = 4):

Eg:

E,:

Fa:

G,:

[
1 3 -1 ¢
o—=0 " O——a
1 2 =2 ¢-1 ¢
L] XD
1 2 =12 =1 3
& a -1
1 2 £-3 =2
¢
Iz
@ o —0
1 3 4 5 6
Ii
o
1 3 4 5 L
Tl
1 3 @ 5 6
- -0
4
ia———]
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Lie Algebras and Fantastic Results

| 2

>

>

A Lie Algebra's roots correspond to a root system. Namely,
(E,R) = (b,R).

We can classify root systems, so we can classify semisimple
Lie Algebras

"Fantastic Theorem”: given an abstract root system, there is
a unique (up to isomorphism) semisimple Lie Algebra over C
which has this abstract system as its root system.

Two semisimple, complex Lie Algebras are isomorphic if and
only if their root systems are isomorphic!
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