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Introduction

Lie Algebra - A vector space g with an anti-symmetric, bilinear
product (x , y) 7→ [x , y ] that satisfies the Jacobi Identity

[x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0

Examples

Any associative algebra (e.g. the set of all matrices) can be turned into
a Lie algebra by defining [x , y ] := xy − yx
R3 with the cross product, [~x , ~y ] := ~x × ~y

We will seek representation of these Lie Algebras: homomorphisms
ρ : g→ gl(V ) for a chosen vector space V .

ρ is linear
ρ([X ,Y ]) = [ρ(X ), ρ(Y )] = ρ(X )ρ(Y )− ρ(Y )ρ(X )
With any Lie algebra, along comes a ’free’ representation, called the
adjoint representation ad : g→ gl(g) given by x 7→ [x , ·]; the fact
that it’s a representation follows from the Jacobi identity above.
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Why Bother?

They help us to understand a more ”natural” object, the Lie Groups

Lie Group - A group G that is also a differentiable manifold such that
the group operation (g , h) 7→ g−1h is smooth.

Examples

GLn(C), SLn(C), SUn(C)
From Physics we get the Lorentz, Poincaré, Symplectic Sp2n(C)
Groups, and E8

Lie Groups commonly encode symmetries

Lie Algebras are linearization of Lie Groups, and they capture ”local
information” around the identity of the Lie Group. Since Lie Groups
”look” the same near every other point (by translation), we get an
idea of the group by studying the algebra.

Differential Geometry + Topology ⇒ Linear Algebra + Abstract
Algebra
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Linearization?

Let Ψg (h) = g · h · g−1. Then define Ad(g) = (dΨg )e : TeG → TeG

Then for the elements of TeG , define [x , y ] := Ad(x)(y)

[·, ·] defines a Lie Algebra structure on g := TeG

For example, this turns SLn(C) = {M ∈ Mn(C) | det(M) = 1} into
sln(C) = {M ∈ Mn(C) | Tr(M) = 1}
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Some Caveats

We have a few caveats before we go forward
1 Multiple Lie Groups can correspond to the same Lie Algebra

Lie Groups which correspond to the same Lie Algebra are part of the
same isogeny class

GSC

...

Gad

g

Gad = GSC/Z(GSC)

2 We don’t yet know how to go back from the Lie Algebra to the Lie
Group for a given G in an isogeny class

i.e. g→ gln
?−−−→ G → GLn
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Simplifying our study of Lie Algebras

Abelian - [x , y ] = 0 is boring, so we only focus on Lie algebras which
have no non-zero abelian ideals

Things get ugly without this assumption
These are called the semi-simple Lie Algebras
One can classify these completely! (circa 1890)

2 nice features of these
1 ad: g ↪→ gl(g) since Ker(ad) = Z (g) = 0 (the center of g).

So any semi-simple Lie Algebra is essentially a sub-algebra of matrices

2 Every finite-dim representation of any such g is completely reducible,
so we need only focus on the ”prime” representations

specifically those with no non-trivial g-invariant subspace
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sl2(C)

We will study the simplest semi-simple Lie Algebra to understand how
we will generalize

sl2(C) =

{(
a b
c d

)
∈ M2(C)|a + d = 0

}
= Tr−12 (0)

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, and h =

(
1 0
0 −1

)
Check: [h, x ] = 2x , [h, y ] = −2y , and [x , y ] = h
sl2(C) = Cx ⊕ Cy ⊕ Ch
h acts diagonally on any irreducible representation (V , ρ)

So we write, V =
⊕
λ∈C

Vλ where Vλ = {v ∈ V | ρ(h) · v = λv}

Call the weights R = {λ ∈ C | Vλ 6= 0} (finite, since dim sl2(C) <∞)
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sl2(C) continued

Check: If v ∈ Vλ, then x · v ∈ Vλ+2 and y · v ∈ Vλ−2

So R is an unbroken string of complex numbers separated by 2

λ λ+ 2λ− 2 λ+ 4λ− 4

x x x x

y y y y

Fact: R ⊂ Z, and −R = R (symmetric about 0)

So V is entirely determined by the largest (or smallest) element in R
This is known as the highest weight: it is a positive integer
The corresponding eigenvector is the highest weight vector
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Generalizations

Fact: Every semi-simple g has a maximal abelian subalgebra h which
acts diagonally on g

Known as the Cartan subalgebra

Analogously, we get g =
⊕
α∈h∗

gα = g0 ⊕
⊕

α∈R−{0}
gα = h⊕

⊕
α∈R−{0}

gα

for gα = {X ∈ g | ∀H ∈ h, [H,X ] = α(H) · X}, R = {α ∈ h∗ | gα 6= 0}
These α’s are called roots, with gα being root spaces. These are
one dimensional.

One can show that, for any α, we have [gα, g−α] ⊂ h and moreover
gα ⊕ g−α ⊕ [gα, g−α] ∼= sl2(C)

α−α

2−2
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Some properties

α−α

2−2

wα

(i) R is finite, and spans h∗

(ii) ∀α ∈ R, ∃ a symmetry wα that leaves R invariant, i.e.
wα(β) ∈ R, ∀β ∈ R

Reflection w.r.t the hyperplane perpendicular to α
So in particular, if α ∈ R, then wα(α) = −α ∈ R

(iii) ∀α ∈ R, R∩ αC = {±α} (so the only multiples of a root which are
also roots are the ones already predicted above)

(iv) ∀α, β ∈ R, wα(β)− β ∈ αZ
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Possible Configurations

These restrictions are pretty limiting, so we can classify them based
on the dimension of h∗

In 1D, we only get the above example
in 2D, there are 4 possibilities
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Dynkin Diagrams

In general, given a set of root vectors, we can choose a basis
{α1, · · · , α`} known as simple roots. We can show that
〈αi , αj〉 〈αj , αi 〉 ∈ {0, 1, 2, 3} for i 6= j
This motivates us to define the Dynkin-Diagram using the following
rules

1 Create ` nodes, one for each root
2 Between each αi and αj , draw k = 〈αi , αj〉 〈αj , αi 〉 edges between them
3 For each αi and αj , if |αi | 6= |αj |, add an arrow pointing to the shorter

root
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Dynkin Diagrams Cont.

The above diagram actually accounts for all possible root systems, in
the following way

An ←→ sln+1 for n ≥ 1
Bn ←→ so2n+1 for n ≥ 2
Cn ←→ sp2n for n ≥ 3
Dn ←→ so2n for n ≥ 4
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What about Representations?

In the sl2(C) picture, we found the possible set of weights was just Z,
with the highest weights being in Z+. The roots were {−2, 2}, so the
group generated by the roots, 2Z, is a subset of the possible weights
Z.

The same idea generalizes, as follows

Given a g-rep V, write V in terms of h actions:

V =
⊕

λ∈π(V )

Vλ, π(V ) ⊂ h∗ being the finite set of weights appearing in

decomposition of V

The set of all weights ΛW =
⋃
π(V ) is a lattice in Rdim h, containing

the lattice generated by the roots ΛR

It turns out that ΛW /ΛR is a finite group (For sl2(C), ΛW /ΛR = Z2)
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Concluding

It can be shown that for each finite-dimensional irreducible rep. of g
(up to iso), we can associate an element of Λ+

W

Λ+
W ⊂ ΛW ⊂ Rdim h

Λ+
W is the set of dominant integral weights

Λ+
W is a ”cone” in the weight lattice
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Summary

Starting with Lie Groups, we can ”linearize” to get Lie Algebras

We care about representations, since they allow us to manipulate the
group concretely

We restrict to the ”prime” (semi-simple) Lie Algebras, which have no
abelian ideal

By looking at the largest abelian subalgebra, we can decompose g (or
any rep V) into the simultaneous ”eigenspaces”

By looking at the ”eigenvalues”, we can solve the problem entirely
geometrically, and therefore reduce to a full-classification of simple
Lie Algebras, and codify these using the Dynkin Diagrams

There is a 1− 1 correspondence between finite-dimensional irreducible
representations of g and the set Λ+

W of dominant integral weights
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