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Weather model:

❖ Questions to consider: 

Given the probability distribution of the weather today is
[a, b, c]

• How do we predict the weather for tomorrow, if for each day, 
the probabilities of weather changes are all the same? 

• Is it possible that after a thousand years, the chances of weather 
for each day remain unchanged?

Cloudy StormSunny
Sunny

Cloudy
Storm

(2/18)



❖ Formally, a Markov chain is defined to be a sequence of random 
variables                , taking values in a set of states, which we 
denote by S, with initial distribution      and transition matrix     ,

(Xn)n≥0

Markov Chains - what is it? 

λ P

•         has distribution 

• Transition matrix                            , and the Markov property holds:

X0 λ = {λi | i ∈ S}
P = (pij)i,j∈S

P(Xn = in |Xn−1 = in−1, . . . , X0 = i0) = P(Xn = in |Xn−1 = in−1) = pin−1in

if

P(Xn = j) = (λPn)j

Pi(Xn = j) = P(Xn+m = j |Xm = j) = p(n)
ij

❖ Probability distributions
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Markov Chains-communicating classes and irreducibility
We say that a state i communicate with state j if one can get to i from j, as well as 
from j to i with only finite many evolution times. We denote this relation as i <—>j. 

Note: i —> j if and only if                               > 0. Also it requires the sequence pik1
, . . . , pkn−1 j

k1, . . . , kn−1 to be finite.

A B

C D

(1) symmetric: if i —> j then j —> i;
(2) reflective: i <—> i;
(3) transitive: i <—> j and j <—> k imply i <—> k.

Also note that i<—>j means this relation is
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Markov Chains-communicating classes and irreducibility

Definition : A Markov chain is irreducible if its set of states S is a single 
communicating class. 

The sets of states with states having such relation jointly are called 
communicating classes.
Therefore we can partition the set S, into communicating classes with 
respect to this equivalence relation.

A B

C D
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Markov Chains-communicating classes and irreducibility
Illustration of irreducible and reducible Markov chains:

Note: Irreducibility of a Markov chain prepares us to 
 study the equilibrium state of this chain.
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Markov Chains-aperiodicity of Markov chains
❖ Definition: A state i is called aperiodic, if there exists a 

positive integer N, such that               for all             . p(n)
ii > 0 n ≥ N

❖ Theorem: If P is irreducible, and has an aperiodic state i, 
then for all states j and k,              for all sufficiently large 
n.  (therefore all states are aperiodic)

p(n)
jk > 0

❖ Definition:  We call  a  Markov chain  aperiodic  if  all  its 
states are aperiodic . 

Sketch of the proof:
p(r+n+s)

jk = ∑
i1,...,in

p(r)
ji1

pi1i2 . . . pin−1in p(s)
ink ≥ p(r)

ji p(n)
ii p(s)

ik > 0

Now, recall the question: after sufficiently large evolution 
times, will the distribution of states reach an equilibrium?
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λ = {λi ≥ 0 | i ∈ S}

❖ In addition,      is a distribution if                 λ ∑
i∈S

λi = 1

λ❖ We say a measure     is invariant if                . λ = λP

Markov Chains-Invariant distributions
❖ A measure on a Markov chain is any vector

(8/18)

❖ Theorem: Suppose that               is a Markov chain with transition 
matrix P and initial distribution     . If P is both irreducible and  
aperiodic, and has an invariant distribution      , then       

(Xn)n≥0
λ

π
P(Xn = j) = (λPn)j → πj as n → ∞ for all j.

In particular,  
p(n)

ij → πj for all i,j.



Markov Chains-Invariant distributions

(picture credit to smithsonian.com)

(picture credit to BBC NEWS)

(picture credit to Seattle Refined)
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Markov Chains-Invariant distributions

❖ The Perron-Frobenius Theorem:                   

By assuming that the finite-state Markov chain is irreducible and aperiodic,
we can apply the Perron-Frobenius Theorem.

Let A be a positive square matrix.  Then 
• A has one largest eigenvalue          in absolute value and it 

has an positive eigenvector. 
ρ(A)

•        has geometric multiplicity 1.
•        has algebraic multiplicity 1.

ρ(A)
ρ(A)

Note: Also hold for nonnegative A s.t          is positive after some power m.Am

πP = π ⇔ ρ(P) = 1•                                        with unique positive left eigenvector      .    π
• All other eigenvalues are of absolute values < 1.

By applying the Perron-Frobenius Theorem to P,
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Markov Chains-Invariant distributions
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Markov Chains - Recurrence and transience.
❖ Let               be a Markov chain with transition matrix P. Then a 

state             is recurrent if
(Xn)n≥0

i ∈ S

i❖ We say that     is transient if 

Pi(Xn = i for infinitely many n) = 1

Pi(Xn = i for infinitely many n) = 0

Now we are ready to see one implementation of the abstract Markov 
chains- -the random walks.
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Simple random walks-one dimension
We start by studying simple random walk on the integer latices. At each 
time step, the random walker flips a fair coin to decide its next move.

Let        denote the position at time n,      be the position it starts at. At each 
time step j, 

Sn = x + X1 + . . . + Xn

P(Xj = 1) = P(Xj = − 1) = 1/2

Sn x

{Xj = 1, if Head appears on the j-th throw;
−1, otherwise.

we have

Questions:

• On average, how far is the walker from the starting point ?

• Does the walker keeps returning to the origin or does it eventually leave forever?
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Simple random walks-one dimension
It’s easy to check that 

E(Sn) = x + E(X1) + . . . + E(Xn) = x + 0 + . . . + 0 = x;
and since (assume the walker starts from 0)

Var(X) = E(X2) − E(X)2 = E(X2) = 1

Var(Sn) = 0 + Var(X1) + . . . + Var(Xn) = n
we have

σSn
= n (typical distance from the origin)

❖ What does this inform to us?
In one dimension, there are at most         integers that are within 
typical distance with the mean distance.
 
So the chance of lying on a particular integer should shrink as a 
a constant times          .

n

P(Sn = j) ∼
C

n

n− 1
2
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Simple random walks-one dimension
We may notice that after an odd number of steps, the walker must end at an odd integer;
similarly in order to get to an even integer, we need even steps.

P(S2n = 0) = (2n
n )(

1
2

)n(
1
2

)n =
(2n)!
n!n!

(
1
2

)2n

So we claim that the return probability

n → ∞Stirling’s formula states that as                ,

n! ∼ 2πnn+ 1
2 e−n .

P(S2n = 0) =
(2n)!
n!n!

(
1
2

)2n ∼
2

2πn1/2
=

C0

n1/2
.Then
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Simple random walks-one dimension
❖ Define       to be a random variable that denotes the number of 

time the walker returns to 0, then 
V

V =
∞

∑
n=0

I{S2n = 0}
(where I{A} is an indicator function)

E(V ) =
∞

∑
n=0

E(I{S2n = 0}) = 1 +
∞

∑
n=1

P(S2n = 0) = 1 +
∞

∑
n=1

2

2π
n− 1

2

= 1 +
2

2π

∞

∑
n=1

n− 1
2 = ∞

(Recall that the sum                diverges since           .)                  

❖ Consider the mean of the number of visits

∞

∑
n=1

n− 1
2

1
2

< 1

If we let q = P(the walker ever return to 0),  then we can show that 
q = 1 by supposing q < 1, and draw contradiction that E(V) will 
actually be finite.
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Simple random walks-higher dimensions
❖ What will happen if the random walker takes action in higher dimensions, say      ? 

• In each direction, the random walks will be performed as in one dimension

Zd

• In 2n steps, we expect (2n/d) steps to be taken in each of the d-directions

• Return to origin:

P(any particular integer) ∼
cd

nd/2

P(Sn = 0) ∼
cd

nd/2
Since

E(V ) =
∞

∑
2n=0

P(Sn = 0) ∼
∞

∑
n=0

cd

nd/2
= { < ∞, d ≥ 3

= ∞, d = 1,2

❖ The results correspond to the facts that if the Markov chain is a simple symmetric
    on      , all states are recurrent; if it’s on      ,           , all states are transient.Z2 Zd d ≥ 3
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